Koenning SR, Wrather JA. Suppression of soybean yield potential in the continental United States by plant diseases from 2006 to 2009. Plant Health Prog. 2010. doi:10.1094/PHP-2010-1122-01-RS.
Google Scholar
Wrather JA, Koenning SR. Effects of diseases on soybean yields in the United States 1996 to 2007. Plant Health Prog. 2009. doi:10.1094/PHP-2009-0401-01-RS.
Google Scholar
Kaufmann MJ, Gerdemann J. Root and stem rot of soybean caused by Phytophthora sojae n. sp. Phytopathology. 1958;48:201–8.
Google Scholar
Dorrance A, Mills D, Robertson A, Draper M, Giesler L, Tenuta A. Phytophthora root and stem rot of soybean. Plant Health Instr. 2007. doi:10.1094/PHI-I-2007-0830-07.
Google Scholar
Morris PF, Ward E. Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones. Physiol Mol Plant Pathol. 1992;40:17–22.
Article
CAS
Google Scholar
Morris PF, Bone E, Tyler BM. Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol. 1998;117:1171–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moy P, Qutob D, Chapman BP, Atkinson I, Gijzen M. Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Mol Plant-Microbe Interact. 2004;17:1051–62.
Article
CAS
PubMed
Google Scholar
Schmitthenner A. Problems and progress in control of Phytophthora root rot of soybean. Plant Dis. 1985;69:362–8.
Article
Google Scholar
Demirbas A, Rector B, Lohnes D, Fioritto R, Graef G, Cregan P, Shoemaker R, Specht J. Simple sequence repeat markers linked to the soybean genes for Phytophthora resistance. Crop Sci. 2001;41:1220–7.
Article
CAS
Google Scholar
Weng C, Yu K, Anderson TR, Poysa V. Mapping genes conferring resistance to Phytophthora root rot of soybean, Rps1a and Rps7. J Hered. 2001;92:442–6.
Article
CAS
PubMed
Google Scholar
Wu X, Zhang B, Shi S, Zhao J, Feng Y, Na G, Gai J, Han X. Identification, genetic analysis and mapping of resistance to Phytophthora sojae of Pm28 in soybean. Agric Sci China. 2011;10:1506–11.
Article
CAS
Google Scholar
Sun S, Wu X, Zhao J, Wang Y, Tang Q, Yu D, Gai J, Xing H. Characterization and mapping of RpsYu25, a novel resistance gene to Phytophthora sojae. Plant Breed. 2011;130:139–43.
Article
CAS
Google Scholar
Zhang J, Xia C, Wang X, Duan C, Sun S, Wu X, Zhu Z. Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar. Theor Appl Genet. 2013;126:1555–61.
Article
CAS
PubMed
Google Scholar
Zhang J, Xia C, Duan C, Sun S, Wang X, Wu X, Zhu Z. Identification and candidate gene analysis of a novel Phytophthora resistance gene Rps10 in a Chinese soybean cultivar. PLoS One. 2013;8:e69799.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin F, Zhao M, Ping J, Johnson A, Zhang B, Abney TS, Hughes TJ, Ma J. Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B. Theor Appl Genet. 2013;126:2177–85.
Article
CAS
PubMed
Google Scholar
Sugimoto T, Yoshida S, Kaga A, Hajika M, Watanabe K, Aino M, Tatsuda K, Yamamoto R, Matoh T, Walker DR, Biggs AR, Ishimoto M. Genetic analysis and identification of DNA markers linked to a novel Phytophthora sojae resistance gene in the Japanese soybean cultivar Waseshiroge. Euphytica. 2011;182:133–45.
Article
CAS
Google Scholar
Gordon SG, St Martin SK, Dorrance AE. 8 Maps to a Resistance Gene Rich Region on Soybean Molecular Linkage Group F. Crop Sci. 2006;46:168–73.
Article
CAS
Google Scholar
Sandhu D, Gao H, Cianzio S, Bhattacharyya MK. Deletion of a disease resistance nucleotide-binding-site leucine-rich- repeat-like sequence is associated with the loss of the Phytophthora resistance gene Rps4 in soybean. Genetics. 2004;168:2157–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dorrance A, McClure S, DeSilva A. Pathogenic diversity of Phytophthora sojae in Ohio soybean fields. Plant Dis. 2003;87:139–46.
Article
Google Scholar
Schmitthenner A, Hobe M, Bhat R. Phytophthora sojae races in Ohio over a 10-year interval. Plant Dis. 1994;78:269–76.
Article
Google Scholar
Yang X, Ruff R, Meng X, Workneh F. Races of Phytophthora sojae in Iowa soybean fields. Plant Dis. 1996;80:1418–20.
Article
Google Scholar
Abney T, Melgar J, Richards T, Scott D, Grogan J, Young J. New races of Phytophthora sojae with Rps 1-d virulence. Plant Dis. 1997;81:653–5.
Article
Google Scholar
Leitz R, Hartman G, Pedersen W, Nickell C. Races of Phytophthora sojae on soybean in Illinois. Plant Dis. 2000;84:487.
Article
Google Scholar
Kaitany R, Hart L, Safir G. Virulence composition of Phytophthora sojae in Michigan. Plant Dis. 2001;85:1103–6.
Article
Google Scholar
Grau CR, Dorrance AE, Bond J, Russin J. Fungal Diseases. In: Boerma R, Specht JE, editors. Soybeans: Improvement, Production and Uses. Madison: Agronomy Monograph No. 16, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America; 2004. p. 679–763.
Google Scholar
Kou Y, Wang S. Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol. 2010;13:181–5.
Article
CAS
PubMed
Google Scholar
Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ. Shades of gray: the world of quantitative disease resistance. Trends Plant Sci. 2009;14:21–9.
Article
CAS
PubMed
Google Scholar
St. Clair DA. Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol. 2010;48:247–68.
Article
CAS
PubMed
Google Scholar
Tooley P, Grau C. Field characterization of rate-reducing resistance to Phytophthora megasperma f. sp. glycinea in soybean. Phytopathology. 1984;74:1201–8.
Article
Google Scholar
Mideros S, Nita M, Dorrance AE. Characterization of components of partial resistance, Rps2, and root resistance to Phytophthora sojae in soybean. Phytopathology. 2007;97:655–62.
Article
PubMed
Google Scholar
Shaner G. Evaluation of slow-mildewing resistance of Knox wheat in the field. Phytopathology. 1973;63:1307–11.
Article
Google Scholar
Tucker DM, Griffey CA, Liu S, Brown-Guedira G, Marshall DS, Saghai Maroof MA. Confirmation of three quantitative trait loci conferring adult plant resistance to powdery mildew in two winter wheat populations. Euphytica. 2007;155:1–13.
Article
Google Scholar
Wang H, Wijeratne A, Wijeratne S, Lee S, Taylor CG, St Martin SK, McHale L, Dorrance AE. Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis. BMC Genomics. 2012;13:428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vega-Sánchez ME, Redinbaugh MG, Costanzo S, Dorrance AE. Spatial and temporal expression analysis of defense-related genes in soybean cultivars with different levels of partial resistance to Phytophthora sojae. Plant Pathol. 2005;66:175–82.
Google Scholar
Zhou L, Mideros SX, Bao L, Hanlon R, Arredondo FD, Tripathy S, Krampis K, Jerauld A, Evans C. St. Martin SK, Maroof SMA, Hoeschele I, Dorrance AE, Tyler BM. Infection and genotype remodel the entire soybean transcriptome. BMC Genomics. 2009;10:49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thomas R, Fang X, Ranathunge K, Anderson TR, Peterson CA, Bernards MA. Soybean root suberin: Anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae. Plant Physiol. 2007;144:299–311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ranathunge K, Thomas R, Fang X, Peterson CA, Gijzen M, Bernards MA. Soybean root suberin and partial resistance to root rot caused by Phytophthora sojae. Phytopathology. 2008;98:1179–89.
Article
PubMed
Google Scholar
Dorrance A, Schmitthenner A. New sources of resistance to Phytophthora sojae in the soybean plant introductions. Plant Dis. 2000;84:1303–8.
Article
CAS
Google Scholar
Burnham K, Dorrance A, VanToai T, St Martin S. Quantitative trait loci for partial resistance to Phytophthora sojae in Soybean. Crop Sci. 2003;43:1610–7.
Article
CAS
Google Scholar
Weng C, Yu K, Anderson TR, Poysa V. A quantitative trait locus influencing tolerance to Phytophthora root rot in the soybean cultivar ‘Conrad’. Euphytica. 2007;158:81–6.
Article
Google Scholar
Han Y, Teng W, Yu K, Poysa V, Anderson T, Qiu L, Lightfoot DA, Li W. Mapping QTL tolerance to Phytophthora root rot in soybean using microsatellite and RAPD/SCAR derived markers. Euphytica. 2008;162:231–9.
Article
CAS
Google Scholar
Li X, Han Y, Teng W, Zhang S, Yu K, Poysa V, Anderson T, Ding J, Li W. Pyramided QTL underlying tolerance to Phytophthora root rot in mega-environments from soybean cultivars ‘Conrad’ and ‘Hefeng 25’. Theor Appl Genet. 2010;121:651–8.
Article
PubMed
Google Scholar
Wang H, Waller L, Tripathy S, St Martin SK, Zhou L, Krampis K, Tucker DM, Mao Y, Hoeschele I, Maroof S, Tyler BM, Dorrance AE. Analysis of genes underlying soybean quantitative trait loci conferring partial resistance to Phytophthora sojae. Plant Genome. 2010;3:23–40.
Article
CAS
Google Scholar
Stasko A, Wickramasinghe D, Nauth B, Acharya B, Ellis M, Taylor C, McHale L, Dorrance A. High density mapping of resistance QTL towards Phytophthora sojae, Pythium irregulare, and Fusarium graminearum in the same soybean population. Crop Sci. 2016. doi:10.2135/cropsci2015.12.0749.
Google Scholar
Tucker D, Maroof S, Mideros S, Skoneczka J, Nabati D, Buss G, Hoeschele I, Tyler B, St. Martin S, Dorrance A. Mapping quantitative trait loci for partial resistance to Phytophthora sojae in a soybean Interspecific Cross. Crop Sci. 2010;50:628–35.
Article
Google Scholar
Wu X, Zhou B, Zhao J, Guo N, Zhang B, Yang F, Chen S, Gai J, Xing H. Identification of quantitative trait loci for partial resistance to Phytophthora sojae in soybean. Plant Breed. 2011;130:144–9.
Article
CAS
Google Scholar
Lee S, Mian MR, Sneller CH, Wang H, Dorrance AE, McHale LK. Joint linkage QTL analyses for partial resistance to Phytophthora sojae in soybean using six nested inbred populations with heterogeneous conditions. Theor Appl Genet. 2014;127:429–44.
Article
PubMed
Google Scholar
Nguyen V, Vuong T, VanToai T, Lee J, Wu X, Mian M, Dorrance A, Shannon J, Nguyen H. Mapping of quantitative trait loci associated with resistance to Phytophthora sojae and flooding tolerance in soybean. Crop Sci. 2012;52:2481–93.
Article
CAS
Google Scholar
Lee S, Mian MR, McHale LK, Wang H, Wijeratne AJ, Sneller CH, Dorrance AE. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841. Theor Appl Genet. 2013;126:1121–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee S, Mian R, McHale LK, Sneller CH, Dorrance AE. Identification of quantitative trait loci conditioning partial resistance to Phytophthora sojae in soybean PI 407861A. Crop Sci. 2013;53:1022–31.
Article
CAS
Google Scholar
Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One. 2013;8:e54985.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, St Martin SK, Dorrance AE. Comparison of phenotypic methods and yield contributions of quantitative trait loci for partial resistance to in soybean. Crop Sci. 2012;52:609–22.
Article
CAS
Google Scholar
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao X, Starmer J, Martin ER. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol. 2008;32:361–9.
Article
PubMed
Google Scholar
Sun J, Guo N, Lei J, Li L, Hu G, Xing H. Association mapping for partial resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr.). J Genet. 2014;93:355–63.
Article
CAS
PubMed
Google Scholar
Li L Gua N, Niu J, Wang Z, Cui X, Sun J, Zhao T, Xing H. Loci and candidate gene identification for resistance to Phytophthora sojae via association analysis in soybean [Glycine max (L.) Merr.]. Mol Genet Genomics. 2016. doi: 10.1007/s00438-015-1164-x.
Bastien M, Sonah H, Belzile F. Genome wide association mapping of Sclerotinia sclerotiorum resistance in soybean with a genotyping-by-sequencing approach. Plant Genome. 2014;7:1–13.
Article
CAS
Google Scholar
Wen Z, Tan R, Yuan J, Bales C, Du W, Zhang S, Chilvers MI, Schmidt C, Song Q, Cregan PB. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics. 2014;15:809.
Article
PubMed
PubMed Central
CAS
Google Scholar
Iquira E, Humira S, Francois B. Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC Plant Biol. 2015;15:5.
Article
PubMed
PubMed Central
Google Scholar
Han Y, Zhao X, Cao G, Wang Y, Li Y, Liu D, Teng W, Zhang Z, Li D, Qiu L. Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2. 3.5. 7 of the cyst nematode analyzed by genome-wide association mapping. BMC Genomics. 2015;16(16):1.
CAS
Google Scholar
Grant D, Nelson RT, Cannon SB, Shoemaker RC. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 2010;38:D843–6.
Article
CAS
PubMed
Google Scholar
Arahana VS, Graef GL, Specht JE, Steadman JR, Eskridge KM. Identification of QTLs for Resistance to Sclerotinia sclerotiorum in Soybean. Crop Sci. 2001;41:180–8.
Article
CAS
Google Scholar
Sugimoto T, Yoshida S, Watanabe K, Aino M, Kanto T, Maekawa K, Irie K. Identification of SSR markers linked to the Phytophthora resistance gene Rps1‐d in soybean. Plant Breed. 2008;127:154–9.
Article
CAS
Google Scholar
McHale L, Tan X, Koehl P, Michelmore RW. Plant NBS-LRR proteins: adaptable guards. Genome Biol. 2006;7:212.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gómez-Gómez L, Boller T. FLS2 an LRR receptor–like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell. 2000;5:1003–11.
Article
PubMed
Google Scholar
Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell. 2006;125:749–60.
Article
CAS
PubMed
Google Scholar
Kemmerling B, Halter T, Mazzotta S, Mosher S, Nürnberger T. A genome-wide survey for Arabidopsis leucine-rich repeat receptor kinases implicated in plant immunity. Front Plant Sci. 2011;2:88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becraft PW. Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol. 2002;18:163–92.
Article
CAS
PubMed
Google Scholar
Wang D, Weaver ND, Kesarwani M, Dong X. Induction of protein secretory pathway is required for systemic acquired resistance. Science. 2005;308:1036–40.
Article
CAS
PubMed
Google Scholar
Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol. 2009;69:473–88.
Article
CAS
PubMed
Google Scholar
Matern U, Grimmig B, Kneusel RE. Plant cell wall reinforcement in the disease-resistance response: molecular composition and regulation. Can J Bot. 1995;73:511–7.
Article
Google Scholar
Cosgrove DJ. Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol. 2015;25:162–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morita-Yamamuro C, Tsutsui T, Sato M, Yoshioka H, Tamaoki M, Ogawa D, Matsuura H, Yoshihara T, Ikeda A, Uyeda I, Yamaguchi J. The Arabidopsis gene CAD1 controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain. Plant Cell Physiol. 2005;46:902–12.
Article
CAS
PubMed
Google Scholar
Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, Duate J, Borges A, Teixeira AR. The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol. 2007;8:677–700.
Article
CAS
PubMed
Google Scholar
Howles PA, Birch RJ, Collings DA, Gebbie LK, Hurley UA, Hocart CH, Arioli T, Williamson RE. A mutation in an Arabidopsis ribose 5‐phosphate isomerase reduces cellulose synthesis and is rescued by exogenous uridine. Plant J. 2006;48:606–18.
Article
CAS
PubMed
Google Scholar
Ellis C, Karafyllidis I, Wasternack C, Turner JG. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell. 2002;14:1557–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hernandez-Blanco C, Feng DX, Hu J, Sanchez-Vallet A, Deslandes L, Llorente F, Berrocal-Lobo M, Keller H, Barlet X, Sanchez-Rodriguez C, Anderson LK, Somerville S, Marco Y, Molina A. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell. 2007;19:890–903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci. 2006;27:587–93.
Article
CAS
PubMed
Google Scholar
Nawrath C, Heck S, Parinthawong N, Metraux JP. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell. 2002;14:275–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell. 2011;23:3812–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lahrmann U, Ding Y, Banhara A, Rath M, Hajirezaei MR, Dohlemann S, von Wiren N, Parniske M, Zuccaro A. Host-related metabolic cues affect colonization strategies of a root endophyte. Proc Natl Acad Sci U S A. 2013;110:13965–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Favre P, Bapaume L, Bossolini E, Delorenzi M, Falquet L, Reinhardt D. A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants. BMC Plant Biol. 2014;14:333.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pastor V, Gamir J, Camañes G, Cerezo M, Sánchez-Bel P, Flors V. Disruption of the ammonium transporter AMT1.1 alters basal defenses generating resistance against Pseudomonas syringae and Plectosphaerella cucumerina. Front Plant Sci. 2014;5:231.
PubMed
PubMed Central
Google Scholar
Waterhouse PM, Wang M, Lough T. Gene silencing as an adaptive defence against viruses. Nature. 2001;411:834–42.
Article
CAS
PubMed
Google Scholar
Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, Choi DS, Kim YJ, Hwang BK. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta. 2008;227:539–58.
Article
CAS
PubMed
Google Scholar
Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell. 2005;17:2832–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee DS, Kim BK, Kwon SJ, Jin HC, Park OK. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochem Biophys Res Commun. 2009;379:1038–42.
Article
CAS
PubMed
Google Scholar
Blée E. Impact of phyto-oxylipins in plant defense. Trends Plant Sci. 2002;7:315–22.
Article
PubMed
Google Scholar
Njiti V, Lightfoot D. Genetic analysis infers Dt loci underlie resistance to Fusarium solani f. sp. glycines in indeterminate soybeans. Can J Plant Sci. 2006;86:83–90.
Article
CAS
Google Scholar
Iqbal M, Meksem K, Njiti V, Kassem MA, Lightfoot D. Microsatellite markers identify three additional quantitative trait loci for resistance to soybean sudden-death syndrome (SDS) in Essex × Forrest RILs. Theor Appl Genet. 2001;102:187–92.
Article
CAS
Google Scholar
Njiti V, Meksem K, Iqbal M, Johnson J, Kassem MA, Zobrist K, Kilo V, Lightfoot D. Common loci underlie field resistance to soybean sudden death syndrome in Forrest, Pyramid, Essex, and Douglas. Theor Appl Genet. 2002;104:294–300.
Article
CAS
PubMed
Google Scholar
Kazi S, Shultz J, Afzal J, Johnson J, Njiti V, Lightfoot DA. Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome. Theor Appl Genet. 2008;116:967–77.
Article
CAS
PubMed
Google Scholar
Abdelmajid KM, Ramos L, Leandro L, Mbofung G, Hyten DL, Kantartzi SK, Njiti VN, Cianzio S, Meksem K. The ‘PI 438489B’ by ‘Hamilton’ SNP-based genetic linkage map of soybean [Glycine max (L.) Merr.] identified quantitative trait loci that underlie seedling SDS resistance. J Plant Genome Sci. 2012;1:18–30.
Article
Google Scholar
Wu X, Blake S, Sleper DA, Shannon JG, Cregan P, Nguyen HT. QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet. 2009;118:1093–105.
Article
CAS
PubMed
Google Scholar
Concibido VC, Lange DA, Denny RL, Orf JH, Young ND. Genome mapping of soybean cyst nematode resistance genes in ‘Peking’, PI 90763, and PI 88788 using DNA markers. Crop Sci. 1997;37:258–64.
Article
CAS
Google Scholar
Vuong T, Sleper D, Shannon J, Wu X, Nguyen H. Confirmation of quantitative trait loci for resistance to multiple-HG types of soybean cyst nematode (Heterodera glycines Ichinohe). Euphytica. 2011;181:101–13.
Article
Google Scholar
Yue P, Arelli P, Sleper D. Molecular characterization of resistance to Heterodera glycines in soybean PI 438489B. Theor Appl Genet. 2001;102:921–8.
Article
CAS
Google Scholar
Ferreira MFDS, Cervigni GDL, Ferreira A, Schuster I, Santana FA, Pereira WD, Barros EG, Moreira MA. QTLs for resistance to soybean cyst nematode, races 3, 9, and 14 in cultivar Hartwig. Pesq Agrop Brasileira. 2011;46:420–8.
Article
Google Scholar
Winter SM, Shelp BJ, Anderson TR, Welacky TW, Rajcan I. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B. Theor Appl Genet. 2007;114:461–72.
Article
PubMed
Google Scholar
Chang W, Dong L, Wang Z, Hu H, Han Y, Teng W, Zhang H, Guo M, Li W. QTL underlying resistance to two HG types of Heterodera glycines found in soybean cultivar ‘L-10’. BMC Genomics. 2011;12:233.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Diers B, Arelli P, Shoemaker R. Loci underlying resistance to race 3 of soybean cyst nematode in Glycine soja plant introduction 468916. Theor Appl Genet. 2001;103:561–6.
Article
CAS
Google Scholar
Qiu B, Arelli P, Sleper D. RFLP markers associated with soybean cyst nematode resistance and seed composition in a ‘Peking’ × ‘Essex’ population. Theor Appl Genet. 1999;98:356–64.
Article
CAS
Google Scholar
Schuster I, Abdelnoor R, Marin S, Carvalho V, Kiihl R, Silva J, Sediyama C, Barros E, Moreira M. Identification of a new major QTL associated with resistance to soybean cyst nematode (Heterodera glycines). Theor Appl Genet. 2001;102:91–6.
Article
CAS
Google Scholar
Guo X, Wang D, Gordon SG, Helliwell E, Smith T, Berry SA, St Martin SK, Dorrance AE. Genetic mapping of QTLs underlying partial resistance to Sclerotinia sclerotiorum in soybean PI 391589A and PI 391589B. Crop Sci. 2008;48:1129–39.
Article
Google Scholar
Huynh T, Bastien M, Iquira E, Turcotte P, Belzile F. Identification of QTLs associated with partial resistance to white mold in soybean using field-based inoculation. Crop Sci. 2010;50:969–79.
Article
Google Scholar
Olhoft PM, Donovan CM, Somers DA. Soybean (Glycine max) transformation using mature cotyledonary node explants. Agrobacter Protoc. 2006;343:385–96.
Article
Google Scholar
Dorrance AE, Berry SA, Anderson TR, Meharg C. Isolation, storage, pathotype characterization, and evaluation of resistance for Phytophthora sojae in soybean. Plant Health Prog. 2008. doi:10.1094/PHP-2008-0118-01-DG.
Google Scholar
Scheet P, Stephens M. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet. 2006;78:629–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song QJ, Hyten DL, Jia GF, Quigley CV, Fickus EW, Nelson RL, Cregan PB. Fingerprinting soybean germplasm and its utility in genomic research. G3-Genes Genom Genet. 2015;5:1999–2006.
Google Scholar
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28:2397–9.
Article
CAS
PubMed
Google Scholar
R Core Team. R. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2012.
Google Scholar
Zhang Z, Ersoz E, Lai C, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010;42:355–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo X, Starmer J, Martin ER. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol. 2008;32:362.
Google Scholar
Wang N, Akey JM, Zhang K, Chakraborty R, Jin L. Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am J Hum Genet. 2002;71:1227–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.
Article
CAS
PubMed
Google Scholar