Bewley JD, Black M. Seeds: Physiology of development and germination. NY: Plenum Press; 1994.
Book
Google Scholar
Finch-Savage WE, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171:501–23.
Article
CAS
PubMed
Google Scholar
Martınez-Gomez P, Dicenta F. Mechanisms of dormancy in seeds of peach (Prunus persica (L.) Batsch) cv. ‘GF305’. Sci Hort. 2001;91:51–8.
Article
Google Scholar
Karam NS, AL-Salem MM. Breaking dormancy in Arbutus andrachna L. seeds by stratification and gibberellic acid. Seed Sci Technol. 2001;29:51–6.
Google Scholar
Jensen M, Eriksen EN. Development of primary dormancy in seeds of Prunus avium during maturation. Seed Sci Technol. 2001;29:307–20.
Google Scholar
Crocker W, Barton LV. After-ripening, germination and storage of certain rosaceous seeds. Contrib Boyce Thompson Inst. 1931;3(3):385–404.
Google Scholar
Grisez TJ. Prunus L. Cherry, peach, and plum: Seeds of woody plants in the United States.Handbook No.450. In: Schopmeyer CS, editor. Chapter 1 Seed biology. Washington DC: United States Department of Agriculture Forest Service; 1974. p. 658–673.
Chang S, Werner DJ. Relationship of seed germination and respiration during stratification with cultivar chilling requirement in peach. Rev Neurol. 1983;139(10):42–5.
Google Scholar
Suszka B, Muller C, Bonnet-Masimbert M. Seeds of broadleaves from harvest to sowing. Paris: Institut National de la Recherche Agronomique (INRA); 1996.
Google Scholar
Tukey HB, Barrett MS. Approximate germination test for non-after-ripened peach seed. Plant Physiol. 1936;11:629–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehanna HT, Martin GC, Nishijima C. Effects of temperature, chemical treatments and endogenous hormone content on peach seed germination and subsequent seedling growth. Sci Hort. 1985;27:63–73.
Article
CAS
Google Scholar
Hartmann HT, Kester DE, Davies FT, Geneve RL. Principles and practices, 6th edition: Plant propagation. USA: Prentice Hall Inc.; 1997.
Google Scholar
Bewley JD, Black M. Physiology and biochemistry of seeds in relation to germination. 2nd ed. Berlin: Springer; 1982. p. 60–125.
Book
Google Scholar
Diaz DH, Martin GC. Peach seed dormancy in relation to endogenous inhibitors and applied growth substances. J Am Soc Hortic Sci. 1972;97:652–4.
Google Scholar
Williams PM, Bradbeer JW, Gaskin P, MacMillan J. Studies in seed dormancy. VIII. The identification and determination of gibberellins A1 and A9 in seeds of Corylus avellana L. Planta. 1974;117:101–8.
Article
CAS
PubMed
Google Scholar
Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci U S A. 1997;94(22):12235–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren J, Sun L, Wu J, Zhao S, Wang C, Wang Y, et al. Cloning and expression analysis of cDNAs for ABA 8'-hydroxylase during sweet cherry fruit maturation and under stress conditions. J Plant Physiol. 2010;167(17):1486–93.
Article
CAS
PubMed
Google Scholar
Pawasut A, Yamane K, Fujishige N, Yoneyama K, Yamaki Y, Honjo H. Influence of seed coat removal and chilling on abscisic acid content and germination in ornamental peach (Prunus persica Batsch) seeds. Journal of Horticultural Science & Biotechnology. 2010;85(3):248–52.
Article
CAS
Google Scholar
Yamane K, Burana C, Kisugi T, Xia X, Yoneyama K, Yamaki Y. Effects of rinsing and low temperature periods on the ABA contents, germination and seedling growth in ornamental peaches. Hort Res (Japan). 2011;10 Suppl 2:262. In Japanese.
Google Scholar
Kachru RB, Singh RN, Yadev IS. Physiological studies on dormancy in grape seeds (Vitis vinifera var. Black Muscat; II. On the effect of exogenous application of growth substances, low chilling temperature and subjection of the seeds to running water. Vitis. 1972;11:289–95.
CAS
Google Scholar
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomic. Nat Rev Genet. 2009;10(1):57–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng C, Chen M, Xu CJ, Bai L, Yin XR, Li X, et al. Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics. 2012;13(1):19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue J, Bao YY, Li B, Cheng YB, Peng ZY. Transcriptome analysis of the brown planthopper Nilaparvata lugens. PLoS One. 2010;5(12):e14233.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez-Gomez P, Crisosto CH, Bonghi C, Rubio M. New approaches to Prunus transcriptome analysis. Genetica. 2011;139(6):755–69.
Article
PubMed
Google Scholar
Tang Q, Ma XJ, Mo CM, Wilson IW, Song C, Zhao H, et al. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics. 2011;12:343.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu K, Xu Q, Da X, Guo F, Ding Y, Deng X. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genomics. 2012;13(1):10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5:16–8.
Article
CAS
PubMed
Google Scholar
Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26(10):1135–45.
Article
CAS
PubMed
Google Scholar
Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet. 2013;45:487–94.
Article
CAS
PubMed
Google Scholar
Alkio M, Jonas U, Declercq M, Van Nocker S, Knoche M. Transcriptional dynamics of the developing sweet cherry (Prunus avium L.) fruit: sequencing, annotation and expression profiling of exocarp-associated genes. Horticulture Res. 2014;1:11.
Article
Google Scholar
Schliesky S, Gowik U, Weber AP, Bräutigam A. RNA-seq assembly–are we there yet? Frontiers in plant science 3. 2012; doi: 10.3389/fpls.2012.00220.
Bairoch A, Boeckmann B. The SWISS-PROT protein sequence data bank. Nucleic Acids Res. 1991;19 Suppl: 2247.
Kanehisa MGS. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Consortium GO. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004;32 suppl 1:D258–61.
Article
Google Scholar
Kucera B, Cohn MA, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res. 2005;15:281–307.
Article
CAS
Google Scholar
Yano R, Takebayashi Y, Nambara E, Kamiya Y, Seo M. Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana. Plant J. 2013;74:815–28.
Article
CAS
PubMed
Google Scholar
Finkelstein R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed dormancy. Annu Rev Plant Biol. 2008;59:387–415.
Article
CAS
PubMed
Google Scholar
Nonogaki M, Sall K, Nambara E, Nonogaki H. Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds. Plant J. 2014;78(3):527–39.
Article
CAS
PubMed
Google Scholar
Santner A, Estelle M. Recent advances and emerging trends in plant hormone signaling. Nature. 2009;459:1071–8.
Article
CAS
PubMed
Google Scholar
Takemura Y, Sudo S, Ikeda T, Matsumoto K, Tamura F. Chilling induces bud endodormancy in Japanese pear ‘Gold Nijisseiki’. Hortic Res. 2011;10:87–92.
Article
Google Scholar
Barrero JM, Jacobsen JV, Talbot MJ, White RG, Swain SM, Garvin DF, Gubler F. Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon. New Phytol. 2012;193:376–86.
Article
CAS
PubMed
Google Scholar
Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev. 2010;24:1695–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, et al. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2. 2, SRK2E/SnRK2. 6/OST1 and SRK2I/SnRK2. 3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol. 2009;50:1345–63.
Article
CAS
PubMed
Google Scholar
Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, et al. Abscisic acid and the control of seed dormancy and germination. Seed Sci Res. 2010;20:55–67.
Article
CAS
Google Scholar
Takemura Y, Kuroki K, Shida Y, Araki S, Takeuchi Y, Tanaka K, et al. Comparative transcriptome analysis of the less-dormant Taiwanese pear and the dormant Japanese pear during winter season. PLoS One. 2015;10(10):e0139595.
Article
PubMed
PubMed Central
Google Scholar
Rodrı’guez MV, Mendiondo GM, Maskin L, Gudesblat GE, Iusem ND, et al. Expression of ABA signalling genes and ABI5 protein levels in imbibed Sorghum bicolor caryopses with contrasting dormancy and at different developmental stages. Ann Bot. 2009;104:975–85.
Article
Google Scholar
Reid JB, Ross JJ, Swain SM. Internode length in Pisum: a new, slender mutant with elevated levels of C19 gibberellins. Planta. 1992;188:462–7.
Article
CAS
PubMed
Google Scholar
Ross JJ, Reid JB, Swain SM, Hasan O, Poole AT, Hedden P, et al. Genetic regulation of gibberellin deactivation in Pisum. Plant J. 1995;17:241–50.
Google Scholar
Thomas SG, Phillips AL, Hedden P. Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A. 1999;96:4698–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, et al. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol. 2001;125:1508–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finnie C, Melchior S, Roepstorff P, Svensson B. Proteome analysis of grain filling and seed maturation in barley. Plant Physiol. 2002;129(3):1308–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marrocco K, Zhou Y, Bury E, Dieterle M, Funk M, Genschik P, et al. Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction. Plant J. 2006;45(3):423–38.
Article
CAS
PubMed
Google Scholar
Koops P, Pelser S, Ignatz M, Klose C, Marrocco-Selden K, Kretsch T. EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. J Exp Bot. 2011;62(15):5547–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Je J, Chen H, Song C, Lim CO. Arabidopsis DREB2C modulates ABA biosynthesis during germination. Biochem Biophys Res Commun. 2014;452(1):91–8.
Article
CAS
PubMed
Google Scholar
Cuming AC. Seed Proteins: LEA proteins. In: Shewry PR, Casey R, editors. Chapter 1 Seed protein. Dordrecht, Netherlands: Kluwer Academic Press. 1999. p. 753–780.
Wise J. LEAping to conclusions: a computational reanalysis of the late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics. 2003;4:52–71.
Article
PubMed
PubMed Central
Google Scholar
Ophir R, Pang X, Halaly T, Venkateswari J, Lavee S, Galbraith D, et al. Gene-expression profiling of grape bud response to two alternative dormancy-release stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. Plant Mol Biol. 2009;71:403–23.
Article
CAS
PubMed
Google Scholar
Yakovlev IA, Asante DKA, Fossdal CG, Partanen J, Junttila O, Johnsen O. Dehydrins expression related to timing of bud burst in Norway spruce. Planta. 2008;228:459–72.
Article
CAS
PubMed
Google Scholar
Chandler PM, Robertson M. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Physiol Plant Mol Biol. 1994;47:113–41.
Article
Google Scholar
Du D, Zhang Q, Cheng T, Pan H, Yang W, Sun L. Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol Biol Rep. 2013;40(2):1937–46.
Article
CAS
PubMed
Google Scholar
Lee BH, Henderson DA, Zhu JK. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell. 2005;17:3155–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 1998;16:433–42.
Article
CAS
PubMed
Google Scholar
Cook D, Fowler S, Fiehn O, Thomashow MF. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci U S A. 2004;101:15243–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian DQ, Pan XY, Yu YM, Wang WY, Zhang F, Ge YY, et al. De novo characterization of the Anthurium transcriptome and analysis of its digital gene expression under cold stress. BMC Genomics. 2013;14:827.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high‐salt‐and cold‐responsive gene expression. Plant J. 2003;33:751–63.
Article
CAS
PubMed
Google Scholar
Wang Y, Jiang CJ, Li YY, Wei CL, Deng WW. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep. 2012;31:27–34.
Article
PubMed
Google Scholar
Zheng C, Zhao L, Wang Y, Shen J, Zhang Y, Jia S, et al. Integrated RNA-Seq and sRNASeq analysis identifies chilling and freezing responsive key molecular players and pathways in tea plant (Camellia sinensis). PLoS One. 2015;10(4):e0125031.
Article
PubMed
PubMed Central
Google Scholar
Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics. 2008;9:536.
Article
PubMed
PubMed Central
Google Scholar
Horvath DP, Sung S, Kim D, Chao W, Anderson J. Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol. 2010;73:169–79.
Article
CAS
PubMed
Google Scholar
Li Z, Reighard GL, Abbott AG, Bielenberg DG. Dormancy associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot. 2009;60:3521–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, et al. Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot. Plant Physiol. 2011;157:485–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishitani C, Saito T, Ubi BE, Shimizu T, Itai A, Saito T, et al. Transcriptome analysis of Pyrus pyrifolia leaf buds during transition from endodormancy to ecodormancy. Sci Hortic. 2012;147:49–55.
Article
CAS
Google Scholar
Saito T, Bai S, Ito A, Sakamoto D, Saito T, Ubi BE, et al. Expression and genomic structure of the dormancy-associated MADS box genes MADS13 in Japanese pears (Pyrus pyrifolia Nakai) that differ in their chilling requirement for endodormancy release. Tree Physiol. 2013;33:654–67.
Article
CAS
PubMed
Google Scholar
Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R. Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy breaking reagent treatment. J Exp Bot. 2011;62:3481–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leida C, Conejero A, Arbona V, Gomez-Cadenas A, Llacer G, Badenes ML, Rios G. Chilling-dependent release of seed and bud dormancy in peach associates to common changes in gene expression. PLoS One. 2012;7(5):e35777.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep. 1993;11:113–6.
Article
CAS
Google Scholar
Copois V, Bibeau F, Bascoul-Mollevi C, Salvetat N, Chalbos P, et al. Impact of RNA degradation on gene expression profile: Assessment of different methods to reliably determine RNA quality. J Biotechnol. 2007;127:549–59.
Article
CAS
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet J. 2011;1(17):10–2.
Article
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.
Article
CAS
PubMed
Google Scholar
Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7:203–14.
Article
CAS
PubMed
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
Article
PubMed
PubMed Central
Google Scholar
Li B, Dewey C. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007;35 suppl 1:D61–5.
Article
CAS
PubMed
Google Scholar
Zdobnov EM, Apweiler R. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17(9):847–8.
Article
CAS
PubMed
Google Scholar
Ye J, George C, Irena Z, Ioana C, Steve R, Thomas LM. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134.
Article
CAS
PubMed
PubMed Central
Google Scholar