Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci U S A. 2003;100(21):12201–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Shaughnessy PJ, Willerton L, Baker PJ. Changes in Leydig cell gene expression during development in the mouse. Biol Reprod. 2002;66(4):966–75.
Article
PubMed
Google Scholar
Rolland AD, Jegou B, Pineau C. Testicular development and spermatogenesis: harvesting the postgenomics bounty. Adv Exp Med Biol. 2008;636:16–41.
Article
CAS
PubMed
Google Scholar
Sha J, Zhou Z, Li J, Yin L, Yang H, Hu G, Luo M, Chan HC, Zhou K. Identification of testis development and spermatogenesis-related genes in human and mouse testes using cDNA arrays. Mol Hum Reprod. 2002;8(6):511–7.
Article
CAS
PubMed
Google Scholar
Eddy EM. Male germ cell gene expression. Recent Prog Horm Res. 2002;57:103–28.
Article
CAS
PubMed
Google Scholar
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–25.
Article
CAS
PubMed
Google Scholar
Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol. 2014;6(11):a022616.
Article
PubMed
Google Scholar
Zhen Y, Stenmark H. Cellular functions of Rab GTPases at a glance. J Cell Sci. 2015;128(17):3171–6.
Article
CAS
PubMed
Google Scholar
Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC, Pereira-Leal JB. Thousands of rab GTPases for the cell biologist. PLoS Comput Biol. 2011;7(10):e1002217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bucci C, Chiariello M. Signal transduction gRABs attention. Cell Signal. 2006;18(1):1–8.
Article
CAS
PubMed
Google Scholar
Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2(2):107–17.
Article
CAS
PubMed
Google Scholar
Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A. Rab GTPases at a glance. J Cell Sci. 2007;120(Pt 22):3905–10.
Article
CAS
PubMed
Google Scholar
Shibata H, Omata W, Kojima I. Insulin stimulates guanine nucleotide exchange on Rab4 via a wortmannin-sensitive signaling pathway in rat adipocytes. J Biol Chem. 1997;272(23):14542–6.
Article
CAS
PubMed
Google Scholar
Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip SC, Waterfield MD, Backer JM, Zerial M. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol. 1999;1(4):249–52.
Article
CAS
PubMed
Google Scholar
Knight JB, Cao KT, Gibson GV, Olson AL. Expression of a prenylation-deficient Rab4 interferes with propagation of insulin signaling through insulin receptor substrate-1. Endocrinology. 2000;141(1):208–18.
CAS
PubMed
Google Scholar
Cheng KW, Lahad JP, Kuo WL, Lapuk A, Yamada K, Auersperg N, Liu J, Smith-McCune K, Lu KH, Fishman D, et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med. 2004;10(11):1251–6.
Article
CAS
PubMed
Google Scholar
de Graaf P, Zwart WT, van Dijken RA, Deneka M, Schulz TK, Geijsen N, Coffer PJ, Gadella BM, Verkleij AJ, van der Sluijs P, et al. Phosphatidylinositol 4-kinasebeta is critical for functional association of rab11 with the Golgi complex. Mol Biol Cell. 2004;15(4):2038–47.
Article
PubMed
PubMed Central
Google Scholar
Ren M, Zeng J, De Lemos-Chiarandini C, Rosenfeld M, Adesnik M, Sabatini DD. In its active form, the GTP-binding protein rab8 interacts with a stress-activated protein kinase. Proc Natl Acad Sci U S A. 1996;93(10):5151–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohler K, Louvard D, Zahraoui A. Rab13 regulates PKA signaling during tight junction assembly. J Cell Biol. 2004;165(2):175–80.
Article
PubMed
PubMed Central
Google Scholar
Alto NM, Soderling J, Scott JD. Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol. 2002;158(4):659–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tisdale EJ. Rab2 interacts directly with atypical protein kinase C (aPKC) iota/lambda and inhibits aPKCiota/lambda-dependent glyceraldehyde-3-phosphate dehydrogenase phosphorylation. J Biol Chem. 2003;278(52):52524–30.
Article
CAS
PubMed
Google Scholar
Miaczynska M, Christoforidis S, Giner A, Shevchenko A, Uttenweiler-Joseph S, Habermann B, Wilm M, Parton RG, Zerial M. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell. 2004;116(3):445–56.
Article
CAS
PubMed
Google Scholar
Wu M, Yin G, Zhao X, Ji C, Gu S, Tang R, Dong H, Xie Y, Mao Y. Human RAB24, interestingly and predominantly distributed in the nuclei of COS-7 cells, is colocalized with cyclophilin A and GABARAP. Int J Mol Med. 2006;17(5):749–54.
CAS
PubMed
Google Scholar
Del Nery E, Miserey-Lenkei S, Falguieres T, Nizak C, Johannes L, Perez F, Goud B. Rab6A and Rab6A' GTPases play non-overlapping roles in membrane trafficking. Traffic. 2006;7(4):394–407.
Article
PubMed
Google Scholar
Fan Y, Xin XY, Chen BL, Ma X. Knockdown of RAB25 expression by RNAi inhibits growth of human epithelial ovarian cancer cells in vitro and in vivo. Pathology. 2006;38(6):561–7.
Article
PubMed
Google Scholar
Iida H, Noda M, Kaneko T, Doiguchi M, Mori T. Identification of rab12 as a vesicle-associated small GTPase highly expressed in Sertoli cells of rat testis. Mol Reprod Dev. 2005;71(2):178–85.
Article
CAS
PubMed
Google Scholar
Kouranti I, Sachse M, Arouche N, Goud B, Echard A. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr Biol. 2006;16(17):1719–25.
Article
CAS
PubMed
Google Scholar
Wang Y, Ng EL, Tang BL. Rab23: what exactly does it traffic? Traffic. 2006;7(6):746–50.
Article
CAS
PubMed
Google Scholar
Yu X, Prekeris R, Gould GW. Role of endosomal Rab GTPases in cytokinesis. Eur J Cell Biol. 2007;86(1):25–35.
Article
CAS
PubMed
Google Scholar
Ward CR, Faundes D, Foster JA. The monomeric GTP binding protein, rab3a, is associated with the acrosome in mouse sperm. Mol Reprod Dev. 1999;53(4):413–21.
Article
CAS
PubMed
Google Scholar
Nakamura Y, Asano A, Hosaka Y, Takeuchi T, Iwanaga T, Yamano Y. Expression and intracellular localization of TBC1D9, a Rab GTPase-accelerating protein, in mice testes. Exp Anim. 2015;64(4):415–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lo JC, Jamsai D, O'Connor AE, Borg C, Clark BJ, Whisstock JC, Field MC, Adams V, Ishikawa T, Aitken RJ, et al. RAB-like 2 has an essential role in male fertility, sperm intra-flagellar transport, and tail assembly. PLoS Genet. 2012;8(10):e1002969.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lau AS, Mruk DD. Rab8B GTPase and junction dynamics in the testis. Endocrinology. 2003;144(4):1549–63.
Article
CAS
PubMed
Google Scholar
Shintani M, Tada M, Kobayashi T, Kajiho H, Kontani K, Katada T. Characterization of Rab45/RASEF containing EF-hand domain and a coiled-coil motif as a self-associating GTPase. Biochem Biophys Res Commun. 2007;357(3):661–7.
Article
CAS
PubMed
Google Scholar
Jeong BC, Hong CY, Chattopadhyay S, Park JH, Gong EY, Kim HJ, Chun SY, Lee K. Androgen receptor corepressor-19 kDa (ARR19), a leucine-rich protein that represses the transcriptional activity of androgen receptor through recruitment of histone deacetylase. Mol Endocrinol. 2004;18(1):13–25.
Article
CAS
PubMed
Google Scholar
Sambrook J, Maniatis T, Fritsch EF. Molecular cloning : a laboratory manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory; 1989.
Google Scholar
Qamar I, Gong EY, Kim Y, Song CH, Lee HJ, Chun SY, Lee K. Anti-steroidogenic factor ARR19 inhibits testicular steroidogenesis through the suppression of Nur77 transactivation. J Biol Chem. 2010;285(29):22360–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong EY, Park E, Lee HJ, Lee K. Expression of Atp8b3 in murine testis and its characterization as a testis specific P-type ATPase. Reproduction. 2009;137(2):345–51.
Article
CAS
PubMed
Google Scholar
Chattopadhyay S, Gong EY, Hwang M, Park E, Lee HJ, Hong CY, Choi HS, Cheong JH, Kwon HB, Lee K. The CCAAT enhancer-binding protein-alpha negatively regulates the transactivation of androgen receptor in prostate cancer cells. Mol Endocrinol. 2006;20(5):984–95.
Article
CAS
PubMed
Google Scholar
Gong EY, Park E, Chattopadhyay S, Lee SY, Lee K. Gene expression profile of rat prostate during pubertal growth and maturation. Reprod Sci. 2011;18(5):426–34.
Article
CAS
PubMed
Google Scholar
Park E, Kim Y, Lee HJ, Lee K. Differential regulation of steroidogenic enzyme genes by TRalpha signaling in testicular Leydig cells. Mol Endocrinol. 2014;28(6):822–33.
Article
PubMed
Google Scholar
Desjardins C, Ewing LL. Cell and molecular biology of the testis. New York ; Oxford: Oxford University Press; 1993.
Google Scholar
Steger K. Transcriptional and translational regulation of gene expression in haploid spermatids. Anat Embryol. 1999;199(6):471–87.
Article
CAS
PubMed
Google Scholar
Wu M, Wang T, Loh E, Hong W, Song H. Structural basis for recruitment of RILP by small GTPase Rab7. EMBO J. 2005;24(8):1491–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace DM, Lindsay AJ, Hendrick AG, McCaffrey MW. The novel Rab11-FIP/Rip/RCP family of proteins displays extensive homo- and hetero-interacting abilities. Biochem Biophys Res Commun. 2002;292(4):909–15.
Article
CAS
PubMed
Google Scholar
Eathiraj S, Mishra A, Prekeris R, Lambright DG. Structural basis for Rab11-mediated recruitment of FIP3 to recycling endosomes. J Mol Biol. 2006;364(2):121–35.
Article
CAS
PubMed
Google Scholar
Shiba T, Koga H, Shin HW, Kawasaki M, Kato R, Nakayama K, Wakatsuki S. Structural basis for Rab11-dependent membrane recruitment of a family of Rab11-interacting protein 3 (FIP3)/Arfophilin-1. Proc Natl Acad Sci U S A. 2006;103(42):15416–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillingham AK, Munro S. Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta. 2003;1641(2–3):71–85.
Article
CAS
PubMed
Google Scholar
Vitale G, Rybin V, Christoforidis S, Thornqvist P, McCaffrey M, Stenmark H, Zerial M. Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5. EMBO J. 1998;17(7):1941–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krendel M, Mooseker MS. Myosins: tails (and heads) of functional diversity. Physiology (Bethesda). 2005;20:239–51.
Article
CAS
Google Scholar
Mooseker MS, Foth BJ. The structural and functional diversity of the myosin family of actin-based molecular motors. In: Myosins. Netherlands: Springer; 2008: pp. 1–34.
Vale RD. The Molecular Motor Toolbox for Intracellular Transport. Cell. 2003;112(4):467–80.
Article
CAS
PubMed
Google Scholar
Jin Y, Sultana A, Gandhi P, Franklin E, Hamamoto S, Khan Amir R, Munson M, Schekman R, Weisman Lois S. Myosin V Transports Secretory Vesicles via a Rab GTPase Cascade and Interaction with the Exocyst Complex. Dev Cell. 2011;21(6):1156–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Itoh T, Watabe A, Toh EA, Matsui Y. Complex formation with Ypt11p, a rab-type small GTPase, is essential to facilitate the function of Myo2p, a class V myosin, in mitochondrial distribution in Saccharomyces cerevisiae. Mol Cell Biol. 2002;22(22):7744–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muller RT, Honnert U, Reinhard J, Bahler M. The rat myosin myr 5 is a GTPase-activating protein for Rho in vivo: essential role of arginine 1695. Mol Biol Cell. 1997;8(10):2039–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhir V, Field MC. TbRAB23; a nuclear-associated Rab protein from Trypanosoma brucei. Mol Biochem Parasitol. 2004;136(2):297–301.
Article
CAS
PubMed
Google Scholar
Lindsay AJ, Jollivet F, Horgan CP, Khan AR, Raposo G, McCaffrey MW, Goud B. Identification and characterization of multiple novel Rab-myosin Va interactions. Mol Biol Cell. 2013;24(21):3420–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roland JT, Lapierre LA, Goldenring JR. Alternative splicing in class V myosins determines association with Rab10. J Biol Chem. 2009;284(2):1213–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wollert T, Patel A, Lee YL, Provance Jr DW, Vought VE, Cosgrove MS, Mercer JA, Langford GM. Myosin5a tail associates directly with Rab3A-containing compartments in neurons. J Biol Chem. 2011;286(16):14352–61.
Article
PubMed
PubMed Central
Google Scholar
Fukuda M, Kuroda TS, Mikoshiba K. Slac2-a/melanophilin, the missing link between Rab27 and myosin Va: implications of a tripartite protein complex for melanosome transport. J Biol Chem. 2002;277(14):12432–6.
Article
CAS
PubMed
Google Scholar
Wu XS, Rao K, Zhang H, Wang F, Sellers JR, Matesic LE, Copeland NG, Jenkins NA, Hammer 3rd JA. Identification of an organelle receptor for myosin-Va. Nat Cell Biol. 2002;4(4):271–8.
Article
CAS
PubMed
Google Scholar