Goodfellow M, Magee JG. Taxonomy of mycobacteria. In: Gangadharam PRJ, Jenkins PA, editors. Mycobacteria: I Basic Aspects. US: Springer; 1997. p. 1–71.
Google Scholar
Nyka W. Studies on the effect of starvation on mycobacteria. Infect Immun. 1974;9:843–50.
CAS
PubMed
PubMed Central
Google Scholar
Loebel RO, Shorr E, Richardson HB. The influence of foodstuffs upon the respiratory metabolism and growth of human tubercle bacilli. J Bacteriol. 1933;26(2):139–66.
CAS
PubMed
PubMed Central
Google Scholar
Loebel RO, Shorr E, Richardson HB. The influence of adverse conditions upon the respiratory metabolism and growth of human tubercle bacilli. J Bacteriol. 1933;26(2):167–200.
CAS
PubMed
PubMed Central
Google Scholar
Gengenbacher M, Rao SP, Pethe K, Dick T. Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology. 2010;156(Pt 1):81–7.
Article
CAS
PubMed
Google Scholar
Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol. 2002;43:717–31.
Article
CAS
PubMed
Google Scholar
Xie Z, Siddiqi N, Rubin EJ. Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother. 2005;49(11):4778–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu M-L, Gengenbacher M, Dick T. Mild nutrient starvation triggers the development of a small-cell survival morphotype in mycobacteria. Front Microbiol. 2016;7:947.
PubMed
PubMed Central
Google Scholar
Tomioka H. Purification and characterization of the Tween-hydrolyzing esterase of Mycobacterium smegmatis. J Bacteriol. 1983;155:1249–59.
CAS
PubMed
PubMed Central
Google Scholar
Datta P, Dasgupta A, Singh AK, Mukherjee P, Kundu M, Basu J. Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol Microbiol. 2006;62(6):1655–73.
Article
CAS
PubMed
Google Scholar
Sherratt DJ, Arciszewska LK, Crozat E, Graham JE, Grainge I. The Escherichia coli DNA translocase FtsK. Biochem Soc Trans. 2010;38(2):395–8.
Article
CAS
PubMed
Google Scholar
Bishai W, Hett EC, Chao MC, Deng LL, Rubin EJ. A mycobacterial enzyme essential for cell division synergizes with resuscitation-promoting factor. PLoS Pathog. 2008;4(2):e1000001.
Article
Google Scholar
Bhowmick T, Ghosh S, Dixit K, Ganesan V, Ramagopal UA, Dey D, Sarma SP, Ramakumar S, Nagaraja V. Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors. Nat Commun. 2014;5:4124.
Article
CAS
PubMed
Google Scholar
Anuchin AM, Goncharenko AV, Demina GR, Mulyukin AL, Ostrovsky DN, Kaprelyants AS. The role of histone-like protein, Hlp, in Mycobacterium smegmatis dormancy. FEMS Microbiol Lett. 2010;308(2):101–7.
CAS
PubMed
Google Scholar
Lee BH, Murugasu-Oei B, Dick T. Upregulation of a histone-like protein in dormant Mycobacterium smegmatis. Mol Gen Genet. 1998;260(5):475–9.
Article
CAS
PubMed
Google Scholar
Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci U S A. 2014;111(11):4257–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boon C, Dick T. Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J Bacteriol. 2002;184(24):6760–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dahl JL, Kraus CN, Boshoff HI, Doan B, Foley K, Avarbock D, Kaplan G, Mizrahi V, Rubin H, Barry 3rd CE. The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc Natl Acad Sci U S A. 2003;100(17):10026–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Primm TP, Andersen SJ, Mizrahi V, Avarbock D, Rubin H, Barry 3rd CE. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol. 2000;182(17):4889–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boutte CC, Crosson S. Bacterial lifestyle shapes stringent response activation. Trends Microbiol. 2013;21(4):174–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klinkenberg LG, Lee JH, Bishai WR, Karakousis PC. The stringent response is required for full virulence of Mycobacterium tuberculosis in guinea pigs. J Infect Dis. 2010;202(9):1397–404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berney M, Cook GM. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS One. 2010;5(1):e8614.
Article
PubMed
PubMed Central
Google Scholar
Petridis M, Benjak A, Cook GM. Defining the nitrogen regulated transcriptome of Mycobacterium smegmatis using continuous culture. BMC Genomics. 2015;16:821.
Article
PubMed
PubMed Central
Google Scholar
Chandra G, Chater KF. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol Rev. 2014;38(3):345–79.
Article
CAS
PubMed
Google Scholar
Battistuzzi FU, Feijao A, Hedges SB. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol. 2004;4:44.
Article
PubMed
PubMed Central
Google Scholar
Flardh K, Buttner MJ. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol. 2009;7(1):36–49.
Article
PubMed
Google Scholar
McCormick JR, Flardh K. Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev. 2012;36(1):206–31.
Article
CAS
PubMed
Google Scholar
Bibb MJ, Molle V, Buttner MJ. sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J Bacteriol. 2000;182(16):4606–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elliot MA, Bibb MJ, Buttner MJ, Leskiw BK. BldD is a direct regulator of key developmental genes in Streptomyces coelicolor A3(2). Mol Microbiol. 2001;40(1):257–69.
Article
CAS
PubMed
Google Scholar
Champness WC. New loci required for Streptomyces coelicolor morphological and physiological differentiation. J Bacteriol. 1988;170(3):1168–74.
CAS
PubMed
PubMed Central
Google Scholar
Chater KF, Bruton CJ, Plaskitt KA, Buttner MJ, Mendez C, Helmann JD. The developmental fate of S. coelicolor hyphae depends upon a gene product homologous with the motility sigma factor of B. subtilis. Cell. 1989;59(1):133–43.
Article
CAS
PubMed
Google Scholar
Elliot MA, Buttner MJ, Nodwell JR. Multicellular development in Streptomyces. In: Whitworth DE, editor. Myxobacteria: Multicellularity and Differentiation. Herndon: ASM Press; 2008. p. 419–38.
Chapter
Google Scholar
Fowler-Goldsworthy K, Gust B, Mouz S, Chandra G, Findlay KC, Chater KF. The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). Microbiology. 2011;157(Pt 5):1312–28.
Article
CAS
PubMed
Google Scholar
Molle V, Palframan WJ, Findlay KC, Buttner MJ. WhiD and WhiB, homologous proteins required for different stages of sporulation in Streptomyces coelicolor A3(2). J Bacteriol. 2000;182(5):1286–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Yu Y, He X, Zhou X, Deng Z, Chater KF, Tao M. Role of an FtsK-like protein in genetic stability in Streptomyces coelicolor A3(2). J Bacteriol. 2007;189(6):2310–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salerno P, Larsson J, Bucca G, Laing E, Smith CP, Flardh K. One of the two genes encoding nucleoid-associated HU proteins in Streptomyces coelicolor is developmentally regulated and specifically involved in spore maturation. J Bacteriol. 2009;191(21):6489–500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
Article
CAS
Google Scholar
Singh B, Nitharwal RG, Ramesh M, Pettersson BM, Kirsebom LA, Dasgupta S. Asymmetric growth and division in Mycobacterium spp.: compensatory mechanisms for non-medial septa. Mol Microbiol. 2013;88(1):64–76.
Article
CAS
PubMed
Google Scholar