Nicholson WL. Roles of Bacillus endopores in the environment. Cell Mol Life Sci. 2002;59:410–6.
Article
CAS
PubMed
Google Scholar
Lucera A, Costa C, Conte A, Del Nobile MA. Food applications of natural antimicrobial compounds. Front Microbiol. 2012;3:287.
Article
PubMed
PubMed Central
Google Scholar
Sumi CD, Yang BW, Yeo I-C, Hahm YT. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol. 2015;61(2):93–103.
Article
CAS
PubMed
Google Scholar
Abriouel H, Franz CM, Ben Omar N, Galvez A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev. 2011;35(1):201–32.
Article
CAS
PubMed
Google Scholar
Finking R, Marahiel MA. Biosynthesis of nonribosomal peptides1. Annu Rev Microbiol. 2004;58:453–88.
Article
CAS
PubMed
Google Scholar
Fickers P. Antibiotic Compounds from Bacillus: Why are they so Amazing? Am J Biochem Biotechnol. 2012;8(1):38–43.
Article
Google Scholar
van Heel AJ, de Jong A, Montalban-Lopez M, Kok J, Kuipers OP. BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res. 2013;41:448–53.
Article
Google Scholar
Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011;39:339–46.
Article
CAS
Google Scholar
Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, et al. antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 2013;41:204–12.
Article
Google Scholar
Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. antiSMASH 3.0–a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015;43:237–43.
Article
Google Scholar
Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol. 2005;56(4):845–57.
Article
CAS
PubMed
Google Scholar
Mondol MA, Shin HJ, Islam MT. Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity. Mar Drugs. 2013;11(8):2846–72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993;12:39–86.
Article
CAS
PubMed
Google Scholar
Alvarez-Sieiro P, Montalban-Lopez M, Mu D, Kuipers OP. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol. 2016;100(7):2939–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep. 2013;30(1):108–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Velasquez JE, van der Donk WA. Genome mining for ribosomally synthesized natural products. Curr Opin Chem Biol. 2011;15(1):11–21.
Article
CAS
PubMed
Google Scholar
McAuliffe O, Ross RP, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev. 2001;25:285–308.
Article
CAS
PubMed
Google Scholar
Knerr PJ, van der Donk WA. Discovery, biosynthesis, and engineering of lantipeptides. Annu Rev Biochem. 2012;81:479–505.
Article
CAS
PubMed
Google Scholar
McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, van der Donk WA. Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci U S A. 2006;103(46):17243–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, et al. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res. 2000;28(21):4317–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Begley M, Cotter PD, Hill C, Ross RP. Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl Environ Microbiol. 2009;75(17):5451–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garg N, Tang W, Goto Y, Nair SK, van der Donk WA. Lantibiotics from Geobacillus thermodenitrificans. Proc Natl Acad Sci U S A. 2011;109(14):5241–6.
Article
Google Scholar
Caetano T, Barbosa J, Moesker E, Sussmuth RD, Mendo S. Bioengineering of lanthipeptides in Escherichia coli: assessing the specificity of lichenicidin and haloduracin biosynthetic machinery. Res Microbiol. 2014;165(7):600–4.
Article
CAS
PubMed
Google Scholar
Khusainov R, van Heel AJ, Lubelski J, Moll GN, Kuipers OP. Identification of essential amino acid residues in the nisin dehydratase NisB. Front Microbiol. 2015;6:102.
Article
PubMed
PubMed Central
Google Scholar
Lee H, Kim HY. Lantibiotics, class I bacteriocins from the genus Bacillus. J Microbiol Biotechnol. 2011;21(3):229–35.
CAS
PubMed
Google Scholar
Stein T, Heinzmann S, Kiesau P, Himmel B, Entian KD. The spa-box for transcriptional activation of subtilin biosynthesis and immunity in Bacillus subtilis. Mol Microbiol. 2003;47(6):1627–36.
Article
CAS
PubMed
Google Scholar
Kleerebezem M. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides. 2004;25(9):1405–14.
Article
CAS
PubMed
Google Scholar
Kleerebezem M, Bongers R, Rutten G, de Vos WM, Kuipers OP. Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters. Peptides. 2004;25(9):1415–24.
Article
CAS
PubMed
Google Scholar
Corvey C, Stein T, Düsterhus S, Karas M, Entian KD. Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr. Biochem Biophys Res Commun. 2003;304(1):48–54.
Article
CAS
PubMed
Google Scholar
Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl HG, de Kruijff B. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science. 1999;286(5448):2361–4.
Article
CAS
PubMed
Google Scholar
Parisot J, Carey S, Breukink E, Chan WC, Narbad A, Bonev B. Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrob Agents Chemother. 2008;52(2):612–8.
Article
CAS
PubMed
Google Scholar
Bierbaum G, Brötz H, Koller KP, Sahl HG. Cloning, sequencing and production of the lantibiotic mersacidin. FEMS Microbiol Lett. 1995;127(1–2):121–6.
Article
CAS
PubMed
Google Scholar
Hao K, He P, Blom J, Rueckert C, Mao Z, Wu Y, et al. The genome of plant growth-promoting Bacillus amyloliquefaciens subsp. plantarum strain YAU B9601-Y2 contains a gene cluster for mersacidin synthesis. J Bacteriol. 2012;194(12):3264–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, de Jong A, Zhou Z, Kuipers OP. Complete genome sequence of Bacillus amyloliquefaciens strain BH072, isolated from honey. Genome Announc. 2015;3(2):e0098–15.
Brötz H, Bierbaum G, Reynolds PE, Sahl HG. The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem. 1997;246(1):193–9.
Article
PubMed
Google Scholar
Hsu ST, Breukink E, Bierbaum G, Sahl HG, de Kruijff B, Kaptein R, et al. NMR study of mersacidin and lipid II interaction in dodecylphosphocholine micelles. Conformational changes are a key to antimicrobial activity. J Biol Chem. 2003;278(15):13110–7.
Article
CAS
PubMed
Google Scholar
He P, Hao K, Blom J, Ruckert C, Vater J, Mao Z, et al. Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites. J Biotechnol. 2012;164(2):281–91.
Article
CAS
PubMed
Google Scholar
Schmitz S, Hoffmann A, Szekat C, Rudd B, Bierbaum G. The lantibiotic mersacidin is an autoinducing peptide. Appl Environ Microbiol. 2006;72(11):7270–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guder A, Schmitter T, Wiedemann I, Sahl HG, Bierbaum G. Role of the single regulator MrsR1 and the two-component system MrsR2/K2 in the regulation of mersacidin production and immunity. Appl Environ Microbiol. 2002;68(1):106–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klein C, Kaletta C, Schnell N, Entian KD. Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol. 1992. doi: 10.1111/j.1432-1033.1992.tb16605.x.
Bouhss A, Al-Dabbagh B, Vincent M, Odaert B, Aumont-Nicaise M, Bressolier P, et al. Specific interactions of clausin, a new lantibiotic, with lipid precursors of the bacterial cell wall. Biophys J. 2009;97(5):1390–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phelan RW, Barret M, Cotter PD, O’Connor PM, Chen R, Morrissey JP, et al. Subtilomycin: a new lantibiotic from Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans. Mar Drugs. 2013;11(6):1878–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Z, Yuan C, Zhang L, Yousef AE. N-terminal acetylation in paenibacillin, a novel lantibiotic. FEBS Lett. 2008;582(18):2787–92.
Article
CAS
PubMed
Google Scholar
van Belkum MJ, Lohans CT, Vederas JC. Draft Genome sequences of Paenibacillus polymyxa NRRL B-30509 and Paenibacillus terrae NRRL B-30644, strains from a poultry environment that produce tridecaptin A and paenicidins. Genome Announc. 2015;3(2):e00372–15.
Fuchs SW, Jaskolla TW, Bochmann S, Kotter P, Wichelhaus T, Karas M, et al. Entianin, a novel subtilin-like lantibiotic from Bacillus subtilis subsp. spizizenii DSM 15029T with high antimicrobial activity. Appl Environ Microbiol. 2011;77(5):1698–707.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stein T, Borchert S, Conrad B, Feesche J, Hofemeister B, Hofemeister J, et al. Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol. 2002;184(6):1703–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xin B, Zheng J, Xu Z, Song X, Ruan L, Peng D, et al. The Bacillus cereus group is an excellent reservoir of novel lanthipeptides. Appl Envrion Microbiol. 2015;81(5):1765–74.
Article
CAS
Google Scholar
Altena K, Guder A, Cramer C, Bierbaum G. Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl Envrion Microbiol. 2000;66(6):2565–71.
Article
CAS
Google Scholar
Herzner AM, Dischinger J, Szekat C, Josten M, Schmitz S, Yakéléba A, et al. Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. Plos One. 2011;6(7):e22389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arguelles Arias A, Ongena M, Devreese B, Terrak M, Joris B, Fickers P. Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. Plos One. 2013;8(12):e83037.
Article
PubMed
PubMed Central
CAS
Google Scholar
Basi-Chipalu S, Dischinger J, Josten M, Szekat C, Zweynert A, Sahl HG, et al. Pseudomycoicidin, a class II lantibiotic from Bacillus pseudomycoides. Appl Envrion Microbiol. 2015;81(10):3419–29.
Article
CAS
Google Scholar
Wang J, Zhang L, Teng K, Sun S, Sun Z, Zhong J. Cerecidins, novel lantibiotics from Bacillus cereus with potent antimicrobial activity. Appl Envrion Microbiol. 2014;80(8):2633–43.
Article
CAS
Google Scholar
Coburn PS, Gilmore MS. The Enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells. Cell Microbiol. 2003;5(10):661–9.
Article
CAS
PubMed
Google Scholar
Montalbán-López M, Sánchez-Hidalgo M, Cebrián R, Maqueda M. Discovering the bacterial circular proteins: bacteriocins, cyanobactins, and pilins. J Biol Chem. 2012;287(32):27007–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maqueda M, Sanchez-Hidalgo M, Fernandez M, Montalban-Lopez M, Valdivia E, Martinez-Bueno M. Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol Rev. 2008;32(1):2–22.
Article
CAS
PubMed
Google Scholar
Conlan BF, Gillon AD, Craik DJ, Anderson MA. Circular proteins and mechanisms of cyclization. Biopolymers. 2010;94(5):573–83.
Article
CAS
PubMed
Google Scholar
Van Belkum MJ, Martin-Visscher LA, Vederas JC. Structure and genetics of circular bacteriocins. Trends Microbiol. 2011;19(8):411–8.
Article
PubMed
CAS
Google Scholar
Gonzalez C, Langdon GM, Bruix M, Galvez A, Valdivia E, Maqueda M, et al. Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin. Proc Natl Acad Sci U S A. 2000;97(21):11221–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, et al. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol. 2014;196(10):1842–52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wirawan RE, Swanson KM, Kleffmann T, Jack RW, Tagg JR. Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology. 2007;153(5):1619–30.
Article
CAS
PubMed
Google Scholar
Grande Burgos MJ, Pulido RP, Del Carmen Lopez Aguayo M, Galvez A, Lucas R. The cyclic antibacterial peptide enterocin AS-48: isolation, mode of action, and possible food applications. Int J Mol Sci. 2014;15(12):22706–27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kawai Y, Kemperman R, Kok J, Saito T. The circular bacteriocins gassericin A and circularin A. Curr Protein Pept Sci. 2004;5(5):393–8.
Article
CAS
PubMed
Google Scholar
Borrero J, Brede DA, Skaugen M, Diep DB, Herranz C, Nes IF, et al. Characterization of garvicin ML, a novel circular bacteriocin produced by Lactococcus garvieae DCC43, isolated from mallard ducks (Anas platyrhynchos). Appl Envrion Microbiol. 2011;77(1):369–73.
Article
CAS
Google Scholar
Azevedo AC, Bento CB, Ruiz JC, Queiroz MV, Mantovani HC. Distribution and genetic diversity of bacteriocin gene clusters in rumen microbial genomes. Appl Envrion Microbiol. 2015;81(20):7290–304.
Article
CAS
Google Scholar
Yang X, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis. Chemistry. 2013;19(24):7662–77.
Article
CAS
PubMed
Google Scholar
Fluhe L, Marahiel MA. Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis. Curr Opin Chem Biol. 2013;17(4):605–12.
Article
PubMed
CAS
Google Scholar
Kawulka K, Sprules T, McKay RT, Mercier P, Diaper CM, Zuber P, et al. Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to alpha-carbons of phenylalanine and threonine. J Am Chem Soc. 2003;125(16):4726–7.
Article
CAS
PubMed
Google Scholar
Flühe L, Knappe TA, Gattner MJ, Schäfer A, Burghaus O, Linne U, et al. The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat Chem Biol. 2012;8(4):350–7.
Article
PubMed
CAS
Google Scholar
Zheng G, Yan LZ, Vederas JC, Zuber P. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J Bacteriol. 1999;181(23):7346–55.
CAS
PubMed
PubMed Central
Google Scholar
Zheng G, Hehn R, Zuber P. Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J Bacteriol. 2000;182(11):3266–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noll KS, Sinko PJ, Chikindas ML. Elucidation of the molecular mechanisms of action of the natural antimicrobial peptide subtilosin against the bacterial vaginosis-associated pathogen Gardnerella vaginalis. Probiotics Antimicrob. 2011;3(1):41–7.
Article
CAS
Google Scholar
Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J Appl Microbiol. 2008;104(4):1067–74.
Article
CAS
PubMed
Google Scholar
Huang T, Geng H, Miyyapuram VR, Sit CS, Vederas JC, Nakano MM. Isolation of a variant of subtilosin A with hemolytic activity. J Bacteriol. 2009;191(18):5690–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allenby NE, Watts CA, Homuth G, Pragai Z, Wipat A, Ward AC, et al. Phosphate starvation induces the sporulation killing factor of Bacillus subtilis. J Bacteriol. 2006;188(14):5299–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee H, Churey JJ, Worobo RW. Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol Lett. 2009;299(2):205–13.
Article
CAS
PubMed
Google Scholar
Rea MC, Sit CS, Clayton E, O’Connor PM, Whittal RM, Zheng J, et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Natl Acad Sci U S A. 2010;107(20):9352–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Favret ME, Yousten AA. Thuricin: the bacteriocin produced by Bacillus thuringiensis. J Invertebr Pathol. 1989;53(2):206–16.
Article
CAS
PubMed
Google Scholar
Li YM, Milne JC, Madison LL, Kolter R, Walsh CT. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science. 1996;274(5290):1188–93.
Article
CAS
PubMed
Google Scholar
Melby JO, Nard NJ, Mitchell DA. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr Opin Chem Biol. 2011;15(3):369–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banala S, Ensle P, Sussmuth RD. Total synthesis of the ribosomally synthesized linear azole-containing peptide plantazolicin A from Bacillus amyloliquefaciens. Angew Chem Int Ed. 2013;52(36):9518–23.
Article
CAS
Google Scholar
Scholz R, Molohon KJ, Nachtigall J, Vater J, Markley AL, Sussmuth RD, et al. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J Bacteriol. 2011;193(1):215–24.
Article
CAS
PubMed
Google Scholar
Davagnino J, Herrero M, Furlong D, Moreno F, Kolter R. The DNA replication inhibitor microcin B17 is a forty-three-amino-acid protein containing sixty percent glycine. Proteins. 1986;1(3):230–8.
Article
CAS
PubMed
Google Scholar
Heddle JG, Blance SJ, Zamble DB, Hollfelder F, Miller DA, Wentzell LM, et al. The antibiotic microcin B17 is a DNA gyrase poison: characterisation of the mode of inhibition. J Mol Biol. 2001;307(5):1223–34.
Article
CAS
PubMed
Google Scholar
Cox CL, Doroghazi JR, Mitchell DA. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles. BMC Genomics. 2015;16(1):1–16.
Article
CAS
Google Scholar
Lee SW, Mitchell DA, Markley AL, Hensler ME, Gonzalez D, Wohlrab A, et al. Discovery of a widely distributed toxin biosynthetic gene cluster. Proc Natl Acad Sci U S A. 2008;105(15):5879–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nizet V, Beall B, Bast DJ, Datta V, Kilburn L, Low DE, et al. Genetic locus for streptolysin S production by group A Streptococcus. Infect Immun. 2000;68(7):4245–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Budiharjo A, Wang P, Shi H, Fang J, Borriss R, et al. The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Appl Microbiol Biotechnol. 2013;97(23):10081–90.
Article
CAS
PubMed
Google Scholar
Just-Baringo X, Albericio F, Alvarez M. Thiopeptide antibiotics: retrospective and recent advances. Mar Drugs. 2014;12(1):317–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowers AA, Walsh CT, Acker MG. Genetic interception and structural characterization of thiopeptide cyclization precursors from Bacillus cereus. J Am Chem Soc. 2010;132(35):12182–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wieland Brown LC, Acker MG, Clardy J, Walsh CT, Fischbach MA. Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin. Proc Natl Acad Sci U S A. 2009;106(8):2549–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shoji J, Hinoo H, Wakisaka Y, Koizumi K, Mayama M. Isolation of three new antibiotics, thiocillins I, II and III, related to micrococcin P. Studies on antibiotics from the genus Bacillus. VIII. J Antibiot (Tokyo). 1976;29(4):366–74.
Article
CAS
Google Scholar
Stepper J, Shastri S, Loo TS, Preston JC, Novak P, Man P, et al. Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins. FEBS Lett. 2011;585(4):645–50.
Article
CAS
PubMed
Google Scholar
Hsieh YS, Wilkinson BL, O’Connell MR, Mackay JP, Matthews JM, Payne RJ. Synthesis of the bacteriocin glycopeptide sublancin 168 and S-glycosylated variants. Org Lett. 2012;14(7):1910–3.
Article
CAS
PubMed
Google Scholar
Oman TJ, Boettcher JM, Wang H, Okalibe XN, van der Donk WA. Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat Chem Biol. 2011;7(2):78–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paik SH, Chakicherla A, Hansen JN. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem. 1998;273(36):23134–42.
Article
CAS
PubMed
Google Scholar
Bolhuis A, Venema G, Quax WJ, Bron S, van Dijl JM. Functional analysis of paralogous thiol-disulfide oxidoreductases in Bacillus subtilis. J Biol Chem. 1999;274(35):24531–8.
Article
CAS
PubMed
Google Scholar
Serizawa M, Kodama K, Yamamoto H, Kobayashi K, Ogasawara N, Sekiguchi J. Functional analysis of the YvrGHb two-component system of Bacillus subtilis: identification of the regulated genes by DNA microarray and northern blot analyses. Biosci Biotechnol Biochem. 2005;69(11):2155–69.
Article
CAS
PubMed
Google Scholar
Weber W, Fischli W, Hochuli E, Kupfer E, Weibel EK. Anantin—a peptide antagonist of the atrial natriuretic factor (ANF). I. Producing organism, fermentation, isolation and biological activity. J Antibiot (Tokyo). 1991;44(2):164–71.
Article
CAS
Google Scholar
Hegemann JD, Zimmermann M, Xie X, Marahiel MA. Lasso peptides: an intriguing class of bacterial natural products. Acc Chem Res. 2015;48(7):1909–19.
Article
CAS
PubMed
Google Scholar
Maksimov MO, Pelczer I, Link AJ. Precursor-centric genome-mining approach for lasso peptide discovery. Proc Natl Acad Sci U S A. 2012;109(38):15223–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maksimov MO, Pan SJ, James Link A. Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep. 2012;29(9):996–1006.
Article
CAS
PubMed
Google Scholar
Maksimov MO, Link AJ. Discovery and characterization of an isopeptidase that linearizes lasso peptides. J Am Chem Soc. 2013;135(32):12038–47.
Article
CAS
PubMed
Google Scholar
Solbiati JO, Ciaccio M, Farías RN, González-Pastor JE, Moreno F, Salomón RA. Sequence analysis of the four plasmid genes required to produce the circular peptide antibiotic microcin J25. J Bacteriol. 1999;181(8):2659–62.
CAS
PubMed
PubMed Central
Google Scholar
Yan KP, Li Y, Zirah S, Goulard C, Knappe TA, Marahiel MA, Rebuffat S. Dissecting the maturation steps of the lasso peptide microcin J25 in vitro. Chembiochem. 2012;13(7):1046–52.
Article
CAS
PubMed
Google Scholar
Mukhopadhyay J, Sineva E, Knight J, Levy RM, Ebright RH. Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel. Mol Cell. 2004;14(6):739–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Helynck G, Dubertret C, Mayaux JF, Leboul J. Isolation of RP 71955, a new anti-HIV-1 peptide secondary metabolite. J Antibiot (Tokyo). 1993;46(11):1756–7.
Article
CAS
Google Scholar
Delgado MA, Rintoul MR, Farias RN, Salomon RA. Escherichia coli RNA polymerase is the target of the cyclopeptide antibiotic microcin J25. J Bacteriol. 2001;183(15):4543–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cotter PD, Ross RP, Hill C. Bacteriocins–a viable alternative to antibiotics? Nat Rev Microbiol. 2013;11(2):95–105.
Article
CAS
PubMed
Google Scholar
Le Marrec C, Hyronimus B, Bressollier P, Verneuil B, Urdaci MC. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl Environ Microbiol. 2000;66(12):5213–20.
Article
PubMed
PubMed Central
Google Scholar
Kjos M, Borrero J, Opsata M, Birri DJ, Holo H, Cintas LM, et al. Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology. 2011;157(12):3256–67.
Article
CAS
PubMed
Google Scholar
Cui Y, Zhang C, Wang Y, Shi J, Zhang L, Ding Z, et al. Class IIa bacteriocins: diversity and new developments. Int J Mol Sci. 2012;13(12):16668–707.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller KW, Ray P, Steinmetz T, Hanekamp T, Ray B. Gene organization and sequences of pediocin AcH/PA-1 production operons in Pediococcus and Lactobacillus plasmids. Lett Appl Microbiol. 2005;40(1):56–62.
Article
CAS
PubMed
Google Scholar
Hyronimus B, Le Marrec C, Urdaci MC. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4. J Appl Microbiol. 1998;85(1):42–50.
Article
CAS
PubMed
Google Scholar
De Vuyst L, Avonts L, Neysens P, Hoste B, Vancanneyt M, Swings J, et al. The lactobin A and amylovorin L471 encoding genes are identical, and their distribution seems to be restricted to the species Lactobacillus amylovorus that is of interest for cereal fermentations. Int J Food Microbiol. 2004;90(1):93–106.
Article
PubMed
CAS
Google Scholar
Requena T, Yu W, Stoddard GW, McKay LL. Lactococcin A overexpression in a Lactococcus lactis subsp. lactis transformant containing a Tn5 insertion in the lcnD gene. Appl Microbiol Biotechnol. 1995;44(3–4):413–8.
Article
CAS
PubMed
Google Scholar
Kyogoku K, Sekiguchi J. Cloning and sequencing of a new holin-encoding gene of Bacillus licheniformis. Gene. 1996;168(1):61–5.
Article
CAS
PubMed
Google Scholar
Oki M, Kakikawa M, Nakamura S, Yamamura ET, Watanabe K, Sasamoto M, et al. Functional and structural features of the holin HOL protein of the Lactobacillus plantarum phage φg1e: analysis in Escherichia coli system. Gene. 1997;197(1–2):137–45.
Article
CAS
PubMed
Google Scholar
Ziedaite G, Daugelavicius R, Bamford JK, Bamford DH. The Holin protein of bacteriophage PRD1 forms a pore for small-molecule and endolysin translocation. J Bacteriol. 2005;187(15):5397–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anthony T, Chellappa GS, Rajesh T, Gunasekaran P. Functional analysis of a putative holin-like peptide-coding gene in the genome of Bacillus licheniformis AnBa9. Arch Microbiol. 2010;192(1):51–6.
Article
CAS
PubMed
Google Scholar
Young R, Bläsi U. Holins: form and function in bacteriophage lysis. FEMS Microbiol Rev. 1995;17(1–2):191–205.
Article
CAS
PubMed
Google Scholar
Young R. Bacteriophage lysis: mechanism and regulation. Microbiol Rev. 1992;56(3):430–81.
CAS
PubMed
PubMed Central
Google Scholar
Aunpad R, Panbangred W. Evidence for two putative holin-like peptides encoding genes of Bacillus pumilus strain WAPB4. Curr Microbiol. 2012;64(4):343–8.
Article
CAS
PubMed
Google Scholar
Liu J, Pan N, Chen Z. Characterization of an anti-rice bacterial blight polypeptide LCI. Rice Genet Newsl. 1990;7:151–4.
Google Scholar
Gong W, Wang J, Chen Z, Xia B, Lu G. Solution structure of LCI, a novel antimicrobial peptide from Bacillus subtilis. Biochemistry. 2011;50(18):3621–7.
Article
CAS
PubMed
Google Scholar
Liu J, Li Z, Pan N, Chen Z. Purification and partial characterization of an antibacterial protein LCIII. Chin J Biotechnol. 1992;8(3):187–93.
CAS
PubMed
Google Scholar
Wang G. Antimicrobial peptides: discovery, design and novel therapeutic strategies. England: CAB International; 2010.
Netz DJA, Bastos MCF, Sahl HG. Mode of action of the antimicrobial peptide aureocin A53 from Staphylococcus aureus. Appl Environ Microbiol. 2002;68(11):5274–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Netz DJA, Pohl R, Beck-Sickinger AG, Selmer T, Pierik AJ, Bastos MCF, et al. Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus. J Mol Biol. 2002;319(3):745–56.
Article
CAS
PubMed
Google Scholar
Von Tersch MA, Carlton BC. Bacteriocin from Bacillus megaterium ATCC 19213: comparative studies with megacin A-216. J Bacteriol. 1983;155(2):866–71.
Google Scholar
Zakharov SD, Cramer WA. Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes. Biochim Biophys Acta. 2002;1565(2):333–46.
Article
CAS
PubMed
Google Scholar
Michel-Briand Y, Baysse C. The pyocins of Pseudomonas aeruginosa. Biochimie. 2002;84(5–6):499–510.
Article
CAS
PubMed
Google Scholar
Bamford CV, Francescutti T, Cameron CE, Jenkinson HF, Dymock D. Characterization of a novel family of fibronectin-binding proteins with M23 peptidase domains from Treponema denticola. Mol Oral Microbiol. 2010;25(6):369–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabowska M, Jagielska E, Czapinska H, Bochtler M, Sabala I. High resolution structure of an M23 peptidase with a substrate analogue. Sci Rep. 2015;5:14833.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Fewer DP, Holm L, Rouhiainen L, Sivonen K. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc Natl Acad Sci U S A. 2014;111(25):9259–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weissman KJ. The structural biology of biosynthetic megaenzymes. Nat Chem Biol. 2014;11(9):660–70.
Article
CAS
Google Scholar
Aleti G, Sessitsch A, Brader G. Genome mining: prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Comput Struct Biotechnol J. 2015;13:192–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baltz RH. Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth Biol. 2014;3(10):748–58.
Article
CAS
PubMed
Google Scholar
Meena KR, Kanwar SS. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int. 2015. doi: 10.1155/2015/473050.
Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16(3):115–25.
Article
CAS
PubMed
Google Scholar
Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol. 2015;8(2):281–95.
Article
CAS
PubMed
Google Scholar
Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev. 2010;34(6):1037–62.
Article
CAS
PubMed
Google Scholar
Pathak KV, Keharia H. Identification of surfactins and iturins produced by potent fungal antagonist, Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) tree using mass spectrometry. 3 Biotech. 2013;4(3):283–95.
Article
PubMed Central
Google Scholar
Zhao X, Han Y, Tan XQ, Wang J, Zhou ZJ. Optimization of antifungal lipopeptide production from Bacillus sp. BH072 by response surface methodology. J Microbiol. 2014;52(4):324–32.
Article
CAS
PubMed
Google Scholar
Malfanova N, Franzil L, Lugtenberg B, Chebotar V, Ongena M. Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol. 2012;194(11):893–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abderrahmani A, Tapi A, Nateche F, Chollet M, Leclere V, Wathelet B, et al. Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis. Appl Microbiol Biotechnol. 2011;92(3):571–81.
Article
CAS
PubMed
Google Scholar
Shoji J, Hinoo H. Chemical characterization of new antibiotics, cerexins A and B. (Studies on antibiotics from the genus Bacillus. II). J Antibiot (Tokyo). 1975;28(1):60–3.
Article
CAS
Google Scholar
Hathout Y, Ho YP, Ryzhov V, Demirev P, Fenselau C. Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J Nat Prod. 2000;63(11):1492–6.
Article
CAS
PubMed
Google Scholar
Luo C, Liu X, Zhou X, Guo J, Truong J, Wang X, et al. Unusual Biosynthesis and Structure of Locillomycins from Bacillus subtilis 916. Appl Environ Microbiol. 2015;81(19):6601–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo C, Liu X, Zhou H, Wang X, Chen Z. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Appl Environ Microbiol. 2015;81(1):422–31.
Article
CAS
PubMed
Google Scholar
Choi SK, Park SY, Kim R, Kim SB, Lee CH, Kim JF, et al. Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J Bacteriol. 2009;191(10):3350–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang E, Yousef AE. The lipopeptide antibiotic paenibacterin binds to the bacterial outer membrane and exerts bactericidal activity through cytoplasmic membrane damage. Appl Environ Microbiol. 2014;80(9):2700–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ding R, Wu XC, Qian CD, Teng Y, Li O, Zhan ZJ, et al. Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus. J Microbiol. 2011;49(6):942–9.
Article
CAS
PubMed
Google Scholar
Pichard B, Larue JP, Thouvenot D. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol Lett. 1995;133(3):215–8.
Article
CAS
PubMed
Google Scholar
Huang Z, Hu Y, Shou L, Song M. Isolation and partial characterization of cyclic lipopeptide antibiotics produced by Paenibacillus ehimensis B7. BMC Microbiol. 2013;13:87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian CD, Wu XC, Teng Y, Zhao WP, Li O, Fang SG, et al. Battacin (Octapeptin B5), a new cyclic lipopeptide antibiotic from Paenibacillus tianmuensis active against multidrug-resistant Gram-negative bacteria. Antimicrob Agents Chemother. 2012;56(3):1458–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azevedo EC, Rios EM, Fukushima K, Campos-Takaki GM. Bacitracin production by a new strain of Bacillus subtilis. Extraction, purification, and characterization. Appl Biochem Biotechnol. 1993;42(1):1–7.
Article
CAS
PubMed
Google Scholar
Ducluzeau R, Dubos F, Raibaud P, Abrams GD. Inhibition of Clostridium perfringens by an antibiotic substance produced by Bacillus licheniformis in the digestive tract of gnotobiotic mice: effect on other bacteria from the digestive tract. Antimicrob Agents Chemother. 1976;9(1):20–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ozcengiz G, Ogulur I. Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic. New Biotechnol. 2015;32(6):612–9.
Article
CAS
Google Scholar
Borisova SA, Circello BT, Zhang JK, van der Donk WA, Metcalf WW. Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633. Chem Biol. 2010;17(1):28–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JY, Passalacqua KD, Hanna PC, Sherman DH. Regulation of petrobactin and bacillibactin biosynthesis in Bacillus anthracis under iron and oxygen variation. Plos One. 2011;6(6):e20777.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang Y, Frewert S, Harmrolfs K, Herrmann J, Karmann L, Kazmaier U, et al. Heterologous expression of an orphan NRPS gene cluster from Paenibacillus larvae in Escherichia coli revealed production of sevadicin. J Biotechnol. 2015;194:112–4.
Article
CAS
PubMed
Google Scholar
Hansen J, Pschorn W, Ristow H. Functions of the peptide antibiotics tyrocidine and gramicidin. Induction of conformational and structural changes of superhelical DNA. Eur J Biochem. 1982;126(2):279–84.
Article
CAS
PubMed
Google Scholar
Kleinkauf H, Gevers W. Nonribosomal polypeptide synthesis: the biosynthesis of a cyclic peptide antibiotic, gramicidin S. Cold Spring Harb Symp Quant Biol. 1969;34:805–13.
Article
CAS
PubMed
Google Scholar
Kondejewski LH, Farmer SW, Wishart DS, Kay CM, Hancock RE, Hodges RS. Modulation of structure and antibacterial and hemolytic activity by ring size in cyclic gramicidin S analogs. J Biol Chem. 1996;271(41):25261–8.
Article
CAS
PubMed
Google Scholar
Krätzschmar J, Krause M, Marahiel MA. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol. 1989;171(10):5422–9.
Article
PubMed
PubMed Central
Google Scholar
Mootz HD, Marahiel MA. The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol. 1997;179(21):6843–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu XC, Qian CD, Fang HH, Wen YP, Zhou JY, Zhan ZJ, et al. Paenimacrolidin, a novel macrolide antibiotic from Paenibacillus sp. F6-B70 active against methicillin-resistant Staphylococcus aureus. Microb Biotechnol. 2011;4(4):491–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barsby T, Kelly MT, Andersen RJ. Tupuseleiamides and basiliskamides, new acyldipeptides and antifungal polyketides produced in culture by a Bacillus laterosporus isolate obtained from a tropical marine habitat. J Nat Prod. 2002;65(10):1447–51.
Article
CAS
PubMed
Google Scholar
Patel PS, Huang S, Fisher S, Pirnik D, Aklonis C, Dean L, et al. Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy, isolation, physico-chemical characterization and biological activity. J Antibiot (Tokyo). 1995;48(9):997–1003.
Article
CAS
Google Scholar
Moldenhauer J, Chen XH, Borriss R, Piel J. Biosynthesis of the antibiotic bacillaene, the product of a giant polyketide synthase complex of the trans-AT family. Angew Chem Int Ed. 2007;46(43):8195–7.
Article
CAS
Google Scholar
Wu L, Wu H, Chen L, Yu X, Borriss R, Gao X. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep. 2015;5:12975.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, et al. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol. 2006;188(11):4024–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gustafson K, Roman M, Fenical W. The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J Am Chem Soc. 1989;111(19):7519–24.
Article
CAS
Google Scholar
Schneider K, Chen XH, Vater J, Franke P, Nicholson G, Borriss R, et al. Macrolactin is the Polyketide Biosynthesis Product of the pks2 Cluster of Bacillus amyloliquefaciens FZB42. J Nat Prod. 2007;70(9):1417–23.
Article
CAS
PubMed
Google Scholar
Lipomi DJ, Langille NF, Panek JS. Total synthesis of basiliskamides A and B. Org Lett. 2004;6(20):3533–6.
Article
CAS
PubMed
Google Scholar
Yadav JS, Rao PP, Reddy MS, Prasad AR. Stereoselective synthesis of basiliskamides A and B via Prins cyclisation. Tetrahedron Lett. 2008;49(37):5427–30.
Article
CAS
Google Scholar
Li S, Zhang R, Wang Y, Zhang N, Shao J, Qiu M, et al. Promoter analysis and transcription regulation of fus gene cluster responsible for fusaricidin synthesis of Paenibacillus polymyxa SQR-21. Appl Microbiol Biotechnol. 2013;97(21):9479–89.
Article
CAS
PubMed
Google Scholar
Yu WB, Yin CY, Zhou Y, Ye BC. Prediction of the mechanism of action of fusaricidin on Bacillus subtilis. Plos One. 2012;7(11):e50003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cochrane SA, Lohans CT, van Belkum MJ, Bels MA, Vederas JC. Studies on tridecaptin B(1), a lipopeptide with activity against multidrug resistant Gram-negative bacteria. Org Biomol Chem. 2015;13(21):6073–81.
Article
CAS
PubMed
Google Scholar
Sood S, Steinmetz H, Beims H, Mohr KI, Stadler M, Djukic M, et al. Iturin family lipopeptides from the honey bee pathogen Paenibacillus larvae. Chembiochem. 2014;15(13):1947–55.
Article
CAS
PubMed
Google Scholar
Luo Y, Ruan LF, Zhao CM, Wang CX, Peng DH, Sun M. Validation of the intact zwittermicin A biosynthetic gene cluster and discovery of a complementary resistance mechanism in Bacillus thuringiensis. Antimicrob Agents Chemother. 2011;55(9):4161–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kevany BM, Rasko DA, Thomas MG. Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus. Appl Environ Microbiol. 2009;75(4):1144–55.
Article
CAS
PubMed
Google Scholar
Garcia-Gonzalez E, Muller S, Hertlein G, Heid N, Sussmuth RD, Genersch E. Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae. Microbiologyopen. 2014;3(5):642–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lechner M, Findeiß S, Steiner L, Marz M, Stadler P, Prohaska S. Proteinortho: Detection of (Co-)Orthologs in Large-Scale Analysis. BMC Bioinformatics. 2011;12(1):124.
Article
PubMed
PubMed Central
Google Scholar