Yunis JJ, Yasmineh WG. Heterochromatin, satellite DNA, and cell function. Structural DNA of eucaryotes may support and protect genes and aid in speciation. Science. 1971;174:1200–9.
Article
CAS
PubMed
Google Scholar
Warburton PE, Willard HF. Genomic analysis of sequence variation in tandemly repeated DNA. Evidence for localized homogeneous sequence domains within arrays of alpha-satellite DNA. J Mol Biol. 1990;216(1):3–16.
Article
CAS
PubMed
Google Scholar
Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF. Genomic and genetic definition of a functional human centromere. Science. 2001;294(October):109–15.
Article
CAS
PubMed
Google Scholar
Plohl M, Luchetti A, Meštrović N, Mantovani B. Satellite DNAs between selfishness and functionality: Structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene. 2008;409:72–82.
Article
CAS
PubMed
Google Scholar
Feliciello I, Akrap I, Ugarković D. Satellite DNA Modulates Gene Expression in the Beetle Tribolium castaneum after Heat Stress. PLOS Genet. 2015;11(8):e1005466. Available from: http://dx.plos.org/10.1371/journal.pgen.1005466.
Article
CAS
PubMed
PubMed Central
Google Scholar
She X, Horvath JE, Jiang Z, Liu G, Furey TS, Christ L, et al. The structure and evolution of centromeric transition regions within the human genome. Nature. 2004;430(7002):857–64.
Article
CAS
PubMed
Google Scholar
Maio JJ. DNA strand reassociation and polyribonucleotide binding in the African green monkey, Cercopithecus aethiops. J Mol Biol. 1971;56(3):579–95.
Article
CAS
PubMed
Google Scholar
Musich PR, Brown FL, Maio JJ. Highly repetitive component alpha and related alphoid DNAs in man and monkeys. Chromosoma. 1980;80:331–48.
Article
CAS
PubMed
Google Scholar
Maio JJ, Brown FL, McKenna WG, Musich PR. Toward a molecular paleontology of primate genomes. II. The KpnI families of alphoid DNAs. Chromosoma. 1981;83:127–44.
Article
CAS
PubMed
Google Scholar
Alves G, Seuanez HN, Fanning T. Alpha satellite DNA in neotropical primates (Platyrrhini). Chromosoma. 1994;103(4):262–7.
Article
CAS
PubMed
Google Scholar
Willard HF. Evolution of alpha satellite. Curr Opin Genet Dev. 1991;1(4):509–14.
Article
CAS
PubMed
Google Scholar
Rudd MK, Wray GA, Willard HF. The evolutionary dynamics of alpha-satellite. Genome Res. 2006;16:88–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rudd MK, Willard HF. Analysis of the centromeric regions of the human genome assembly. Trends Genet. 2004;20:529–33.
Article
CAS
PubMed
Google Scholar
Miga KH. Completing the human genome: the progress and challenge of satellite DNA assembly. Chromosom Res. 2015;421–26. Available from: http://link.springer.com/10.1007/s10577-015-9488-2.
Schueler MG, Sullivan BA. Structural and functional dynamics of human centromeric chromatin. Annu Rev Genomics Hum Genet. 2006;7:301–13.
Article
CAS
PubMed
Google Scholar
Miga KH, Newton Y, Jain M, Altemose N, Willard HF, Kent WJ. Centromere reference models for human chromosomes X and Y satellite arrays.2014;24(4):697–707.
Alexandrov I, Kazakov A, Tumeneva I, Shepelev V, Yurov Y. Alpha-satellite DNA of primates: old and new families. Chromosoma. 2001;110:253–66.
Article
CAS
PubMed
Google Scholar
Alkan C, Ventura M, Archidiacono N, Rocchi M, Sahinalp SC, Eichler EE. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data. PLoS Comput Biol. 2007;3(9):1807–18.
Article
CAS
PubMed
Google Scholar
Shepelev VA, Alexandrov AA, Yurov YB, Alexandrov I A. The evolutionary origin of man can be traced in the layers of defunct ancestral alpha satellites flanking the active centromeres of human chromosomes. PLoS Genet. 2009;5(9). Available from: http://dx.doi.org/10.1371/journal.pgen.1000641.
Catacchio CR, Ragone R, Chiatante G, Ventura M. Organization and evolution of Gorilla centromeric DNA from old strategies to new approaches. Sci Rep. 2015;5:14189. Available from: http://www.nature.com/doifinder/10.1038/srep14189.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willard HF, Waye JS. Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet. 1987;3(7):192–19.
Alexandrov IA, Medvedev LI, Mashkova TD, Kisselev LL, Romanova LY, Yurov YB. Definition of a new alpha satellite suprachromosomal family characterized by monomeric organization. Nucleic Acids Res. 1993;21(9):2209–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayden KE. Human centromere genomics: Now it’s personal. Chromosom Res. 2012;20(July):621–33.
Article
CAS
Google Scholar
Alexandrov IA, Mitkevich SP, Yurov YB. The phylogeny of human chromosome specific alpha satellites. Chromosoma. 1988;96:443–53.
Article
CAS
PubMed
Google Scholar
Lee C, Wevrick R, Fisher RB, Ferguson-Smith MA, Lin CC. Human centromeric DNAs. Hum Genet. 1997;100:291–304.
Article
CAS
PubMed
Google Scholar
Jorgensen AL, Jones C, Bostock CJ, Bak AL. Different subfamilies of alphoid repetitive DNA are present on the human and chimpanzee homologous chromosomes 21 and 22. EMBO J. 1987;6(6):1691–6.
CAS
PubMed
PubMed Central
Google Scholar
Archidiacono N, Antonacci R, Finelli P, Lonoce A, Rocchi M. Comparative Mapping of Human Alphoid Sequences in Great Apes Using Fluorescence. Genomics. 1995;484:477–84.
Article
Google Scholar
Warburton PE, Haaf T, Gosden J, Lawson D, Willard HF. Characterization of a chromosome-specific chimpanzee alpha satellite subset: evolutionary relationship to subsets on human chromosomes. Genomics. 1996;33(2):220–8.
Article
CAS
PubMed
Google Scholar
Malik HS, Henikoff S. Conflict begets complexity: The evolution of centromeres. Curr Opin Genet Dev. 2002;12:711–8.
Article
CAS
PubMed
Google Scholar
Warburton PE, Willard HF. Interhomologue sequence variation of alpha satellite DNA from human chromosome 17: evidence for concerted evolution along haplotypic lineages. J Mol Evol. 1995;41(6):1006–15.
Article
CAS
PubMed
Google Scholar
Schindelhauer D, Schwarz T. Evidence for a fast, intrachromosomal conversion mechanism from mapping of nucleotide variants within a homogeneous alpha-satellite DNA array. Genome Res. 2002;12:1815–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roizès G. Human centromeric alphoid domains are periodically homogenized so that they vary substantially between homologues. Mechanism and implications for centromere functioning. Nucleic Acids Res. 2006;34(6):1912–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schueler MG, Dunn JM, Bird CP, Ross MT, Viggiano L, Rocchi M, et al. Progressive proximal expansion of the primate X chromosome centromere. Proc Natl Acad Sci U S A. 2005;102(30):10563–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guschanski K, Krause J, Sawyer S, Valente LM, Bailey S, Finstermeier K, et al. Next-Generation Museomics Disentangles One of the Largest Primate Radiations. Syst Biol. 2013;62(4):539–54. Available from: http://sysbio.oxfordjournals.org/cgi/doi/10.1093/sysbio/syt018.
Article
PubMed
PubMed Central
Google Scholar
Mammal Species of the World: A Taxonomic and Geographic Reference (3rd ed). 2005. Wilson D, Reeder D. editors. Johns Hopkins University Press.
Madhani HD, Leadon SA, Smith CA, Hanawalt PC. α DNA in African green monkey cells is organized into extremely long tandem arrays. J Biol Chem. 1986;261:2314–8.
CAS
PubMed
Google Scholar
Fittler F. Analysis of the a-Satellite DNA from African Green Monkey Cells by Restriction Nucleases. Eur J Biochem. 1977;352:343–52.
Article
Google Scholar
Harrison JS, International C, Medicales DR. A new species of guenon (genus Cercopithecus) from Gabon. J Zool. 1984;1988:561–75.
Google Scholar
Lee TN, Singer MF. Structural organization of alpha-satellite DNA in a single monkey chromosome. J Mol Biol. 1982;161:323–42.
Article
CAS
PubMed
Google Scholar
Rosandić M, Paar V, Basar I, Glunčić M, Pavin N, Pilaš I. CENP-B box and pJα sequence distribution in human alpha satellite higher-order repeats (HOR). Chromosom Res. 2006;14:735–53.
Article
CAS
Google Scholar
Bragg LM, Stone G, Butler MK, Hugenholtz P, Tyson GW. Shining a Light on Dark Sequencing: Characterising Errors in Ion Torrent PGM Data. PLoS Comput Biol. 2013;9(4). Available from: http://dx.doi.org/10.1371/journal.pcbi.1003031.
O’Keefe CL, Matera AG. Alpha satellite DNA variant-specific oligoprobes differing by a single base can distinguish chromosome 15 homologs. Genome Res. 2000;10:1342–50.
Article
PubMed
Google Scholar
Silahtaroglu A, Pfundheller H, Koshkin A, Tommerup N. LNA-modified oligonucleotides are highly efficient as FISH probes. Cytogenet Genome Res. 2004;37:32–7.
Article
CAS
Google Scholar
Ollion J, Loll F, Cochennec J, Boudier T, Escudé C. Cell cycle-dependent positioning of individual centromeres in the interphase nucleus of human lymphoblastoid cell lines. Mol Biol Cell. 2015;26(13):2550–60.
Rosenberg H, Singer M, Rosenberg M. Highly reiterated sequences of SIMIANSIMIANSIMIANSIMIANSIMIAN. Science. 1978;200(April):394–402.
Article
CAS
PubMed
Google Scholar
Rojo V, Martínez-Lage A, Giovannotti M, González-Tizón AM, Cerioni PN, Barucchi VC, et al. Evolutionary dynamics of two satellite DNA families in rock lizards of the genus Iberolacerta (Squamata, Lacertidae): different histories but common traits. Chromosom Res. 2015;23(3):441–61.
Article
CAS
Google Scholar
Ruiz-ruano FJ, López-león MD, Cabrero J, Camacho JPM. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci Rep. 2016;6. Available from: http://dx.doi.org/10.1038/srep28333.
Sujiwattanarat P, Thapana W, Srikulnath K, Hirai Y, Hirai H, Koga A. Higher-order repeat structure in alpha satellite DNA occurs in New World monkeys and is not confined to hominoids. Sci Rep. 2015;5:10315. Available from: http://www.nature.com/doifinder/10.1038/srep10315.
Goldberg IG, Sawhney H, Pluta AF, Warburton PE, Earnshaw WC. Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres. Mol Cell Biol. 1996;16(9):5156–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoda K, Nakamura T, Masumoto H, Suzuki N, Kitagawa K, Nakano M, et al. Centromere Protein B of African Green Monkey Cells : Gene Structure, Cellular Expression, and Centromeric Localization. Mol Cell Biol. 1996;16(9):5169–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith GP. Evolution of repeated DNA sequences by unequal crossover. Science. 1976;191:528–35.
Article
CAS
PubMed
Google Scholar
Henikoff S. Near the edge of a chromosome’s “black hole”. Trends Genet. 2002;18(4):165–7.
Article
CAS
PubMed
Google Scholar
Henikoff JG, Thakur J, Kasinathan S, Henikoff S. A unique chromatin complex occupies young a-satellite arrays of human centromeres. Sci Adv. 2015;1:e1400234.
Article
PubMed
PubMed Central
Google Scholar
Guenatri M, Bailly D, Maison C, Almouzni G. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. JCB. 2004;166(4):493–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choo KH, Earle E, Mcquillan C. A homologous subfamily of satellite III DNA on human chromosomes 14 and 22. Nucleic Acids Res. 1990;18(19):5641–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warburton PE, Hasson D, Guillem F, Lescale C, Jin X, Abrusan G. Analysis of the largest tandemly repeated DNA families in the human genome. BMC Genomics. 2008;9:533.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pertile MD, Graham AN, Choo KHA, Kalitsis P. Rapid evolution of mouse Y centromere repeat DNA belies recent sequence stability. Genome Res. 2009;19(12):2202–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mravinac B, Plohl M. Parallelism in evolution of highly repetitive DNAs in sibling species. Mol Biol Evol. 2010;27(8):1857–67.
Article
CAS
PubMed
Google Scholar
Moulin S, Gerbault-Seureau M, Dutrillaux B, Richard FA. Phylogenomics of African guenons. Chromosom Res. 2008;16(5):783–99.
Article
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970;48(3):443–53. Available from: http://www.sciencedirect.com/science/article/pii/0022283670900574.
Article
CAS
PubMed
Google Scholar
Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58(301):236–44.
Edgar RC. MUSCLE : a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004;19:1–19.
Google Scholar
Gouy M, Guindon S, Gascuel O. SeaView Version 4 : A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Mol Biol Evol. 2010;27(2):221–4.
Article
CAS
PubMed
Google Scholar
Rice P. The European Molecular Biology Open Software Suite EMBOSS : The European Molecular Biology Open Software Suite. Trends Genet. 2000;16(6):2–3.
Article
Google Scholar
R Core Team. R a Language and Environment for Statistical Computing. https://www.R-project.org.
Abràmoff MD, Hospitals I, Magalhães PJ, Abràmoff M. Image Processing with ImageJ. J Biophotonics. 2004;11(7):36–42.
Google Scholar