Brasier CM. Ophiostoma novo-ulmi sp.nov., causative agent of current Dutch elm disease pandemics. Mycopathologia. 1991;115:151–61.
Article
Google Scholar
Campana RJ. Inoculation and fungal invasion of the tree. In: Sinclair WA, Campana RJ, editors. Dutch elm Dis. Perspect. after 60 years. Ithaca: Cornell Un; 1978. p. 17–20.
Google Scholar
Webber JF, Brasier CM. The transmission of Dutch elm disease: a study of the process involved. In: Anderson JM, Rayner ADM, Walton DWH, editors. Invertebrate-microbial interactions. Cambridge: Cambridge University Press; 1984. p. 271–306.
Google Scholar
Dogra N, Breuil C. Suppressive subtractive hybridization and differential screening identified genes differentially expressed in yeast and mycelial forms of Ophiostoma piceae. FEMS Microbiol Lett. 2004;238:175–81.
CAS
PubMed
Google Scholar
Krokene P, Solheim H. Pathogenicity of four blue-stain fungi associated with aggressive and nonaggressive bark beetles. Phytopathology. 1998;88:39–44.
Article
CAS
PubMed
Google Scholar
Halmschlager E, Messner R, Kowalski T, Prillinger H. Differentiation of Ophiostoma piceae and Ophiostoma quercus by morphology and RAPD analysis. Syst Appl Microbiol. 1994;17:554–62.
Article
Google Scholar
Naruzawa ES, Bernier L. Control of yeast-mycelium dimorphism in vitro in Dutch elm disease fungi by manipulation of specific external stimuli. Fungal Biol. 2014;118:872–84.
Article
CAS
PubMed
Google Scholar
Kulkarni RK, Nickerson KW. Nutritional control of dimorphism in Ceratocystis ulmi. Exp Mycol. 1981;5:148–54.
Article
CAS
Google Scholar
Dalpé Y. L’influence de la carence en pyridoxine sur la morphologie et l'ultrastructure cellulaire de Ceratocystis ulmi. Can J Bot. 1983;61:2079–84.
Article
Google Scholar
Naruzawa ES, Malagnac F, Bernier L. Effect of linoleic acid on reproduction and yeast-mycelium dimorphism in the Dutch elm disease pathogens. Botany. 2016;96:31–9.
Article
CAS
Google Scholar
Muthukumar G, Kulkarni RK, Nickerson KW. Calmodulin levels in the yeast and mycelial phases of Ceratocystis ulmi. J Bacteriol. 1985;162:47–9.
CAS
PubMed
PubMed Central
Google Scholar
Muthukumar G, Nickerson KW. Ca(II)-calmodulin regulation of fungal dimorphism in Ceratocystis ulmi. J Bacteriol. 1984;159:390–2.
CAS
PubMed
PubMed Central
Google Scholar
Brunton AH, Gadd GM. The effect of exogenously-supplied nucleosides and nucleotides and the involvement of adenosine 3’:5'-cyclic monophosphate (cyclic AMP) in the yeast mycelium transition of Ceratocystis (= Ophiostoma) ulmi. FEMS Microbiol Lett. 1989;60:49–53.
CAS
Google Scholar
Hornby JM, Jacobitz-Kizzier SM, McNeel DJ, Jensen EC, Treves DS, Nickerson KW. Inoculum size effect in dimorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. Appl Environ Microbiol. 2004;70:1356–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berrocal A, Navarrete J, Oviedo C, Nickerson KW. Quorum sensing activity in Ophiostoma ulmi: effects of fusel oils and branched chain amino acids on yeast-mycelial dimorphism. J Appl Microbiol. 2012;113:126–34.
Article
CAS
PubMed
Google Scholar
Wedge MÈ, Naruzawa ES, Nigg M, Bernier L. Diversity in yeast–mycelium dimorphism response of the Dutch elm disease pathogens: the inoculum size effect. Can J Microbiol. 2016;62:1–5.
Article
CAS
Google Scholar
Berrocal A, Oviedo C, Nickerson KW, Navarrete J. Quorum sensing activity and control of yeast-mycelium dimorphism in Ophiostoma floccosum. Biotechnol Lett. 2014;36:1503–13.
Article
CAS
PubMed
Google Scholar
de Salas F, Martínez MJ, Barriuso J. Quorum sensing mechanisms mediated by farnesol in Ophiostoma piceae: its effect on the secretion of sterol esterase. Appl Environ Microbiol. 2015;81:4351–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pereira V, Royer JC, Hintz WE, Field D, Bowden C, Kokurewicz K, et al. A gene associated with filamentous growth in Ophiostoma novo-ulmi has RNA-binding motifs and is similar to a yeast gene involved in mRNA splicing. Curr Genet. 2000;37:94–103.
Article
CAS
PubMed
Google Scholar
Richards WC, Takai S, Lin D, Hiratsuka Y, Asina S. An abnormal strain of Ceratocystis ulmi incapable of producing external symptoms of Dutch elm disease. Eur J For Pathol. 1982;12:193–202.
Article
Google Scholar
Richards WC. Nonsporulation in the Dutch elm disease fungus Ophiostoma ulmi: evidence for control by a single nuclear gene. Rev Can Bot. 1994;72:461–7.
Article
Google Scholar
Gancedo JM. Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001;25:107–23.
Article
CAS
PubMed
Google Scholar
Sánchez-Martínez C, Pérez-Martín J. Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis – similar inputs, different outputs. Curr Opin Microbiol. 2001;4:214–21.
Article
PubMed
Google Scholar
Nadal M, García-Pedrajas MD, Gold SE. Dimorphism in fungal plant pathogens. FEMS Microbiol Lett. 2008;284:127–34.
Article
CAS
PubMed
Google Scholar
Martínez-Espinoza AD, Ruiz-Herrera J, León-Ramírez CG, Gold SE. MAP kinase and cAMP signaling pathways modulate the pH-induced yeast-to-mycelium dimorphic transition in the corn smut fungus Ustilago maydis. Curr Microbiol. 2004;49:274–81.
Article
CAS
PubMed
Google Scholar
Agarwal C, Aulakh KB, Edelen K, Cooper M, Wallen RM, Adams S, et al. Ustilago maydis phosphodiesterases play a role in the dimorphic switch and in pathogenicity. Microbiology. 2013;159:857–68.
Article
CAS
PubMed
Google Scholar
Sonneborn A, Bockmühl DP, Gerads M, Kurpanek K, Sanglard D, Ernst JF. Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol Microbiol. 2000;35:386–96.
Article
CAS
PubMed
Google Scholar
Selvig K, Alspaugh JA. pH response pathways in fungi: adapting to host-derived and environmental signals. Mycobiology. 2011;39:249–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peñalva MA, Tilburn J, Bignell E, Arst HN. Ambient pH gene regulation in fungi: making connections. Trends Microbiol. 2008;16:291–300.
Article
CAS
PubMed
Google Scholar
Madhani HD, Fink GR. The control of filamentous differentiation and virulence in fungi. Trends Cell Biol. 1998;8:348–53.
Article
CAS
PubMed
Google Scholar
Hamel L-P, Nicole M-C, Duplessis S, Ellis BE. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell. 2012;24:1327–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferrigno P, Posas F, Koepp D, Saito H, Silver PA. Regulated nucleo/cytoplasmic exchange of Hog1 MAPK requires the importin beta homologs Nmd5 and Xpo1. EMBO J. 1998;17:5606–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shively CA, Eckwahl MJ, Dobry CJ, Mellacheruvu D, Nesvizhskii A, Kumar A. Genetic networks inducing invasive growth in Saccharomyces cerevisiae identified through systematic genome-wide overexpression. Genetics. 2013;193:1297–310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alonso-Monge R, Navarro-García F, Molero G, Diez-Orejas R, Gustin M, Pla J, et al. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol. 1999;181:3058–68.
CAS
PubMed
PubMed Central
Google Scholar
Lengeler KB, Davidson RC, D’souza C, Harashima T, Shen WC, Wang P, et al. Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev. 2000;64:746–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan X, Heitman J. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol. 1999;19:4874–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robertson LS, Fink GR. The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A. 1998;95:13783–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malcher M, Schladebeck S, Mösch HU. The Yak1 protein kinase lies at the center of a regulatory cascade affecting adhesive growth and stress resistance in Saccharomyces cerevisiae. Genetics. 2011;187:717–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lo HJ, Köhler JR, Didomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997;90:939–49.
Article
CAS
PubMed
Google Scholar
Davis D. Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet. 2003;44:1–7.
Article
CAS
PubMed
Google Scholar
Penãlva MA, Arst HN. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev. 2002;66:426–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang E, Chow W, Wang G, Woo PCY, Lau SKP, Yuen K, et al. Signature gene expression reveals novel clues to the molecular mechanisms of dimorphic transition in Penicillium marneffei. PLoS Genet. 2014;10, e1004662.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin A-P, et al. Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell. 2002;13:3452–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kadosh D, Johnson A. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell. 2005;16:2903–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlisle PL, Kadosh D. A genome-wide transcriptional analysis of morphology determination in Candida albicans. Mol Biol Cell. 2012;24:246–60.
Article
CAS
PubMed
Google Scholar
Forgetta V, Leveque G, Dias J, Grove D, Lyons R, Genik S, et al. Sequencing of the Dutch elm disease fungus genome using the Roche/454 GS-FLX Titanium System in a comparison of multiple genomics core facilities. J Biomol Tech. 2013;24:39–49.
PubMed
PubMed Central
Google Scholar
Comeau AM, Dufour J, Bouvet GF, Jacobi V, Nigg M, Henrissat B, et al. Functional annotation of the Ophiostoma novo-ulmi genome: insights into the phytopathogenicity of the fungal agent of Dutch elm disease. Genome Biol Evol. 2015;7:410–30.
Article
CAS
Google Scholar
Nigg M, Laroche J, Landry CR, Bernier L. RNAseq analysis highlights specific transcriptome signatures of yeast and mycelial growth phases in the Dutch elm disease fungus Ophiostoma novo-ulmi. G3. 2015;5:2487–95.
Article
PubMed
PubMed Central
Google Scholar
Nueda MJ, Tarazona S, Conesa A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics. 2014;30:2598–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Nueda MJ, Ferrer A, Talon M. maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics. 2006;22:1096–102.
Article
CAS
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statistical Soc. 1995;57:289–300.
Google Scholar
Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics. 2006;7:191.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ernst J, Nau GJ, Bar-Joseph Z. Clustering short time series gene expression data. Bioinformatics. 2005;21:159–68.
Article
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6, e21800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desai PR, van Wijlick L, Kurtz D, Juchimiuk M, Ernst JF. Hypoxia and temperature regulated morphogenesis in Candida albicans. PLoS Genet. 2015;11, e1005447.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin R, Dobry CJ, McCown PJ, Kumar K. Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell. 2008;19:284–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hintz W, Pinchback M, de la Bastide P, Burgess S, Jacobi V, Hamelin R, et al. Functional categorization of unique expressed sequence tags obtained from the yeast-like growth phase of the elm pathogen Ophiostoma novo-ulmi. BMC Genomics. 2011;12:431.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lew DJ, Reed SI. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J Cell Biol. 1993;120:1305–20.
Article
CAS
PubMed
Google Scholar
Wang Y. CDKs and the yeast-hyphal decision. Curr Opin Microbiol. 2009;12:644–9.
Article
CAS
PubMed
Google Scholar
Moseley JB, Nurse P. Cdk1 and cell morphology: connections and directions. Curr Opin Cell Biol. 2009;21:82–8.
Article
CAS
PubMed
Google Scholar
Woronin M. Zur Entwicklungsgeschichte der Ascobolus pulcherrimus Cr. und einer Pezizen. Abh. Senkend. Naturforsch. 1964;5:333–44.
Google Scholar
Reichle RE, Alexander JV. Multiperforate septations, woronin bodies, and septal plugs in Fusarium. J. Cell Biol. 1965;24:498–96.
Article
Google Scholar
Whiston E, Zhang Wise H, Sharpton TJ, Jui G, Cole GT, Taylor JW. Comparative transcriptomics of the saprobic and parasitic growth phases in Coccidioides spp. PLoS One. 2012;7, e41034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jedd G, Chua NH. A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol. 2000;2:226–31.
Article
CAS
PubMed
Google Scholar
Tenney K, Hunt I, Sweigard J, Pounder JI, McClain C, Bowman EJ, et al. Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genet Biol. 2000;31:205–17.
Article
CAS
PubMed
Google Scholar
Beck J, Ebel F. Characterization of the major Woronin body protein HexA of the human pathogenic mold Aspergillus fumigatus. Int J Med Microbiol. 2013;303:90–7.
Article
CAS
PubMed
Google Scholar
Soundararajan S, Jedd G, Li X, Ramos-pamplon M, Chua NH, Naqvi NI. Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell. 2004;16:1564–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M, et al. PHI-base update: additions to the pathogen-host interaction database. Nucleic Acids Res. 2008;36:572–6.
Article
CAS
Google Scholar
Gladfelter AS. Control of filamentous fungal cell shape by septins and formins. Nat Rev Microbiol. 2006;4:223–9.
Article
CAS
PubMed
Google Scholar
Lindsey R, Ha Y, Momany M. A septin from the filamentous fungus A. nidulans induces atypical pseudohyphae in the budding yeast S. cerevisiae. PLoS One. 2010;5:1–9.
Article
CAS
Google Scholar
Boyce KJ, Chang H, Souza CAD, Kronstad JW. An Ustilago maydis septin is required for filamentous growth in culture and for full symptom development on maize. Eukaryot Cell. 2005;4:2044–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warenda AJ, Konopka JB. Septin function in Candida albicans morphogenesis. Mol Biol Cell. 2003;13:2732–46.
Article
CAS
Google Scholar
Bischoff JF, Rehner SA, Humber RA. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia. 2009;101:512–30.
Article
CAS
PubMed
Google Scholar
Wang C, St Leger RJ. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot. Cell. 2007;6:808–16.
CAS
Google Scholar
Wang C, Hu G, St Leger RJ. Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet. Biol. 2005;42:704–18.
CAS
Google Scholar
Stringer MA, Timberlake WE. Cerato-ulmin, a toxin involved in Dutch elm disease, is a fungal hydrophobin. Plant Cell. 1993;5:145–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowden CG, Hintz WE, Jeng R, Hubbes M, Horgen PA. Isolation and characterization of the cerato-ulmin toxin of the Dutch elm disease pathogen. Ophiostoma ulmi Curr Genet. 1994;75:323–9.
Article
Google Scholar
Takai S, Richards WC, Stevenson KJ. Evidence for the involvement of cerato-ulmin, the Ceratocystis ulmi toxin, in the development of Dutch elm disease. Physiol Plant Pathol. 1983;23:275–80.
Article
CAS
Google Scholar
Temple B, Horgen PA, Bernier L, Hintz WE. Cerato-ulmin, a hydrophobin secreted by the causal agents of Dutch elm disease, is a parasitic fitness factor. Fungal Genet Biol. 1997;22:39–53.
Article
CAS
PubMed
Google Scholar
Sherif S, Jones AMP, Shukla MR, Saxena PK. Establishment of invasive and non-invasive reporter systems to investigate American elm-Ophiostoma novo-ulmi interactions. Fungal Genet Biol. 2014;71:32–41.
Article
CAS
PubMed
Google Scholar
Tadesse Y, Bernier L, Hintz WE, Horgen PA. Real time RT-PCR quantification and Northern analysis of cerato-ulmin (CU) gene transcription in different strains of the phytopathogens Ophiostoma ulmi and O. novo-ulmi. Mol. Genet. Genomics. 2003;269:789–96.
CAS
Google Scholar
Cook JG, Bardwell L, Thorner J. Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature. 1997;390:85–8.
Article
CAS
PubMed
Google Scholar
Liu H, Styles CA, Fink GR. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science. 1993;262:1741–4.
Article
CAS
PubMed
Google Scholar
Liu H, Köhler J, Fink GR. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science. 1994;266:1723–6.
Article
CAS
PubMed
Google Scholar
Madhani HD, Fink GR. Combinatorial control required for the specificity of yeast MAPK signaling. Science. 1997;275:1314–7.
Article
CAS
PubMed
Google Scholar
O’ Rourke SM, Herskowitz I. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev. 1998;12:2874–86.
Article
Google Scholar
Estruch F, Carlson M. Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol Cell Biol. 1993;13:3872–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martínez-Pastor MT, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 1996;15:2227–35.
PubMed
PubMed Central
Google Scholar
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000;11:4241–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuchin S, Vyas VK, Carlson M. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol. 2002;22:3994–4000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karunanithi S, Cullen PJ. The filamentous growth MAPK pathway responds to glucose starvation through the Mig1/2 transcriptional repressors in Saccharomyces cerevisiae. Genetics. 2012;192:869–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gimeno CJ, Fink GR. Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol. 1994;14:2100–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernier L, Hubbes M. Mutations in Ophiostoma ulmi induced by N-methyl-N’-nitro-N-nitrosoguanidine. Can J Bot. 1990;68:225–31.
Article
CAS
Google Scholar
Aoun M, Rioux D, Simard M, Bernier L. Fungal colonization and host defense reactions in Ulmus americana callus cultures inoculated with Ophiostoma novo-ulmi. Phytopathology. 2009;99:642–50.
Article
PubMed
Google Scholar
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015. http://www.r-project.org/.
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.
Book
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jantzen SG, Sutherland BJ, Minkley DR, Koop BF. GO Trimming: Systematically reducing redundancy in large Gene Ontology datasets. BMC Res Notes. 2011;4:267.
Article
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–50.
Article
CAS
PubMed
Google Scholar