Wang X, Gulbahce N, Yu H.Network-based methods for human disease gene prediction. Brief Funct Genomics. 2011; 10(5):280–93.
Article
CAS
PubMed
Google Scholar
Ala U, Piro RM, Grassi E, Damasco C, Silengo L, Oti M, Provero P, Di Cunto F. Prediction of human disease genes by human-mouse conserved coexpression analysis. PLoS Comput Biol. 2008; 4(3):e1.000043.
Article
Google Scholar
Kann MG. Advances in translational bioinformatics: computational approaches for the hunting of disease genes. Brief Bioinformatics. 2010; 11(1):96–110.
Article
CAS
PubMed
Google Scholar
Jiang Q, Wang J, Wu X, Ma R, Zhang T, Jin S, Han Z, Tan R, Peng J, Liu G. LncRNA2Target: a database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic Acids Res. 2015; 43(Database issue):193–6.
Article
Google Scholar
Navlakha S, Kingsford C. The power of protein interaction networks for associating genes with diseases. Bioinformatics. 2010; 26(8):1057–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang q, Wang G, Zhang T, Wang Y. Predicting human microRNA-disease associations based on support vector machine. Int J Data Mining Bioinformatics. 2013; 8(3):282–93.
Article
Google Scholar
Browne F, Wang H, Zheng H. A computational framework for the prioritization of disease-gene candidates. BMC Genomics. 2015; 16(Suppl 9):S2.
Article
PubMed
PubMed Central
Google Scholar
Chen B, Li M, Wang J, Shang X, Wu FX. A fast and high performance multiple data integration algorithm for identifying human disease genes. BMC Med Genomics. 2015; 8(Suppl 3):S2.
Article
PubMed
PubMed Central
Google Scholar
Chen B, Shang X, Li M, Wang J, Wu FX. Identifying individual-cancer-related genes by re-balancing the training samples. IEEE Transactions on Nanobioscience. 2016; 15(4):309–315.
Article
PubMed
Google Scholar
Jiang q, Hao Y, Wang G, Juan L, Zhang T, Teng M, Liu Y, Wang Y. Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst Biol. 2010; 4:1.
Article
Google Scholar
Bush WS, Dudek SM, Ritchie MD. Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. In: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing. The Big Island of Hawaii: NIH Public Access: 2009. p. 368.
Google Scholar
Yu S, Van Vooren S, Tranchevent LC, De Moor B, Moreau Y. Comparison of vocabularies, representations and ranking algorithms for gene prioritization by text mining. Bioinformatics. 2008; 24(16):i119—25.
Article
PubMed
Google Scholar
Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan B, et al.Gene prioritization through genomic data fusion. Nat Biotechnol. 2006; 24(5):537–44.
Article
CAS
PubMed
Google Scholar
Hu Y, Zhou W, Ren J, Dong L, Wang Y, Jin S, Cheng L. Annotating the function of the human genome with gene ontology and disease ontology. BioMed Res Int. 2016;4130861.
Zhang T, Hu Y, Wu X, Ma R, Jiang Q, Wang Y. Identifying liver cancer-related enhancer SNPs by integrating GWAS and histone modification ChIP-seq data. BioMed Res Int. 2016; 6968:2395341.
Google Scholar
Peng J, Uygun S, Kim T, Wang Y, Rhee SY, Chen J. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks. BMC Bioinformatics. 2015; 16:1.
Article
Google Scholar
Cheng L, Li J, Hu Y, Jiang Y, Liu Y, Chu Y, Wang Z, Wang Y. Using semantic association to extend and infer literature-oriented relativity between terms. IEEE/ACM Trans Comput Biol Bioinformatics. 2015; 12(6):1219–26.
Article
Google Scholar
Cheng L, Jiang Y, Wang Z, Shi H, Sun J, Yang H, Zhang S, Hu Y, Zhou M. DisSim: an online system for exploring significant similar diseases and exhibiting potential therapeutic drugs. Sci Rep. 2016; 6:30024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng J, Wang Y, Chen J. Towards integrative gene functional similarity measurement. BMC Bioinformatics. 2014; 15(2):1.
Google Scholar
Peng J, Li H, Jiang Q, Wang Y, Chen J. An integrative approach for measuring semantic similarities using gene ontology. BMC Syst Biol. 2014; 8(Suppl 5):S8.
Article
PubMed
PubMed Central
Google Scholar
Peng J, Li H, Liu Y, Juan L, Jiang q, Wang Y, Chen J. InteGO2: a web tool for measuring and visualizing gene semantic similarities using gene ontology. BMC Genomics. 2016; 17(s5):530.
Article
PubMed
PubMed Central
Google Scholar
Schlicker A, Lengauer T, Albrecht M. Improving disease gene prioritization using the semantic similarity of gene ontology terms. Bioinformatics. 2010; 26(18):i561—7.
Article
PubMed
Google Scholar
Peng J, Wang T, Hu J, Wang YW, Chen J. Constructing Networks of Organelle Functional Modules in Arabidopsis. Curr Genomics. 2016; 5:427–38.
Article
Google Scholar
Cheng L, Shi H, Wang Z, Hu Y, Yang H, Zhou C, Sun J, Zhou M. IntNetLncSim: an integrative network analysis method to infer human lncRNA functional similarity. Oncotarget. 2016; 7(30):47864–74.
PubMed
PubMed Central
Google Scholar
Hu Y, Zhang Y, Ren J, Wang Y, Wang Z, Zhang J. Statistical approaches for the construction and interpretation of human protein-protein interaction network. BioMed Res Int. 2016;5313050.
Song S, Hao J, Liu Y, Sun J. Improved EGT-Based Robustness Analysis of Negotiation Strategies in Multiagent Systems via Model Checking. IEEE Trans Human-Mach Syst. 2015; 86(86):1–12.
Google Scholar
Moreau Y, Tranchevent LC. Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev Genet. 2012; 13(8):523–36.
Article
CAS
PubMed
Google Scholar
Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011; 12:56–68.
Article
PubMed
PubMed Central
Google Scholar
Schadt EE. Molecular networks as sensors and drivers of common human diseases. Nature. 2009; 461(7261):218–23.
Article
CAS
PubMed
Google Scholar
Oti M, Snel B, Huynen MA, Brunner HG. Predicting disease genes using protein–protein interactions. J Med Genet. 2006; 43(8):691–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krauthammer M, Kaufmann CA, Gilliam TC, Rzhetsky A. Molecular triangulation: bridging linkage and molecular-network information for identifying candidate genes in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2004; 101(42):15148–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Köhler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet. 2008; 82(4):949–58.
Article
PubMed
PubMed Central
Google Scholar
Li Y, Patra JC. Genome-wide inferring gene–phenotype relationship by walking on the heterogeneous network. Bioinformatics. 2010; 26(9):1219–24.
Article
CAS
PubMed
Google Scholar
Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol. 2010; 6:e1000641.
Article
PubMed
PubMed Central
Google Scholar
Van Dongen S. Graph clustering via a discrete uncoupling process. SIAM J Matrix Anal Appl. 2008; 30:121–41.
Article
Google Scholar
Navlakha S, White J, Nagarajan N, Pop M, Kingsford C. Finding biologically accurate clusterings in hierarchical tree decompositions using the variation of information. In: Research in Computational Molecular Biology. Springer: 2009. p. 400–17.
Goel R, Harsha H, Pandey A, Prasad TK. Human protein reference database and human proteinpedia as resources for phosphoproteome analysis. Mol bioSystems. 2012; 8(2):453–63.
Article
CAS
Google Scholar
Brown KR, Jurisica I. Online predicted human interaction database. Bioinformatics. 2005; 21(9):2076–82.
Article
CAS
PubMed
Google Scholar
Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM. org: Online Mendelian Inheritance in Man (OMIM®;), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015; 43(D1):D789—98.
Article
PubMed
Google Scholar
Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014; 11(3):333–7.
Article
CAS
PubMed
Google Scholar
Wang J, Chen G, Li M, Pan Y. Integration of breast cancer gene signatures based on graph centrality. BMC Syst Biol. 2011; 5(3):1.
Article
Google Scholar
Liekens AM, De Knijf J, Daelemans W, Goethals B, De Rijk P, Del-Favero J, et al.BioGraph: unsupervised biomedical knowledge discovery via automated hypothesis generation. Genome Biol. 2011; 12(6):R57.
Article
PubMed
PubMed Central
Google Scholar
Ganegoda GU, Wang J, Wu FX, Li M. Prediction of disease genes using tissue-specified gene-gene network. BMC Syst Biol. 2014; 8(Suppl 3):S3.
Article
PubMed
PubMed Central
Google Scholar
Eronen L, Toivonen H. Biomine: predicting links between biological entities using network models of heterogeneous databases. BMC Bioinformatics. 2012; 13:1.
Article
Google Scholar
Groza T, Köhler S, Moldenhauer D, Vasilevsky N, Baynam G, Zemojtel T, Schriml LM, Kibbe WA, Schofield PN, Beck T, et al.The human phenotype ontology: semantic unification of common and rare disease. Am J Hum Genet. 2015; 97:111–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kibbe WA, Arze C, Felix V, Mitraka E, Bolton E, Fu G, Mungall CJ, Binder JX, Malone J, Vasant D, et al.Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Res. 2015; 43(D1):D1071—8.
Article
PubMed
Google Scholar
Consortium GO, et al.Gene ontology consortium: going forward. Nucleic Acids Res. 2015; 43(D1):D1049—56.
Google Scholar
Peng J, Wang T, Wang J, Wang Y, Chen J. Extending gene ontology with gene association networks. Bioinformatics. 2016; 32(8):1185–94.
Article
CAS
PubMed
Google Scholar
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al.STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015; 43(D1):D447–D452.
Article
PubMed
Google Scholar
Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014; 42(D1):D980—5.
Article
PubMed
Google Scholar
Cheng L, Wang G, Li J, Zhang T, Xu P, Wang Y. SIDD: a semantically integrated database towards a global view of human disease. PloS ONE. 2013; 8(10):e75504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Backstrom L, Leskovec J. Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the fourth ACM international conference on Web search and data mining. Kowloon: ACM: 2011. p. 635–44.
Google Scholar
Johnson R, Zhang T. On the Effectiveness of Laplacian Normalization for Graph Semi-supervised Learning. J Mach Learn Res. 2007; 8(4):1489–1517.
Google Scholar
Tong H, Faloutsos C, Pan JY. Random walk with restart: fast solutions and applications. Knowl Inf Syst. 2008; 14(3):327–46.
Article
Google Scholar
Mattingly C, Rosenstein M, Colby G, Forrest J, Boyer J. The Comparative Toxicogenomics Database (CTD): a resource for comparative toxicological studies. J Exp Zool Part A Comparative Exp Biol. 2006; 305(9):689–92.
Article
CAS
Google Scholar
Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005; 33(suppl 1):D514—7.
PubMed
Google Scholar
Povey S, Lovering R, Bruford E, Wright M, Lush M, Wain H. The HUGO gene nomenclature committee (HGNC). Hum Genet. 2001; 109(6):678–80.
Article
CAS
PubMed
Google Scholar
Lipscomb CE. Medical subject headings (MeSH). Bull Med Libr Assoc. 2000; 88(3):265.
CAS
PubMed
PubMed Central
Google Scholar
Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004; 32(suppl 1):D267—70.
PubMed
Google Scholar
Schriml LM, Arze C, Nadendla S, Chang YWW, Mazaitis M, Felix V, Feng G, Kibbe WA. Disease Ontology: a backbone for disease semantic integration. Nucleic Acids Res. 2012; 40(D1):D940—6.
Article
PubMed
Google Scholar
Köhler S, Doelken SC, Mungall CJ, Bauer S, Firth HV, Bailleul-Forestier I, Black GC, Brown DL, Brudno M, Campbell J, et al.The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 2014; 42(D1):D966—74.
Article
PubMed
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.Gene Ontology: tool for the unification of biology. Nat Genet. 2000; 25:25–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar R, Raghavan P, Rajagopalan S, Sivakumar D, Tomkins A, Upfal E. Stochastic models for the web graph. In: Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on. Redondo Beach: IEEE: 2000. p. 57–65.
Google Scholar
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982; 143:29–36.
Article
CAS
PubMed
Google Scholar