Jacobson DL, Gange SJ, Rose NR, Graham NM. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol. 1997;84(3):223–43.
Article
CAS
PubMed
Google Scholar
Cooper GS, Stroehla BC. The epidemiology of autoimmune diseases. Autoimmun Rev. 2003;2(3):119–25.
Article
PubMed
Google Scholar
Hemminki K, Li X, Sundquist J, Sundquist K. The epidemiology of Graves’ disease: evidence of a genetic and an environmental contribution. J Autoimmun. 2010;34(3):J307–13.
Article
CAS
PubMed
Google Scholar
Manji N, Carr-Smith JD, Boelaert K, Allahabadia A, Armitage M, Chatterjee VK, Lazarus JH, Pearce SH, Vaidya B, Gough SC, et al. Influences of age, gender, smoking, and family history on autoimmune thyroid disease phenotype. J Clin Endocrinol Metab. 2006;91(12):4873–80.
Article
CAS
PubMed
Google Scholar
Tomer Y, Davies TF. Searching for the autoimmune thyroid disease susceptibility genes: from gene mapping to gene function. Endocr Rev. 2003;24(5):694–717.
Article
CAS
PubMed
Google Scholar
Villanueva R, Greenberg DA, Davies TF, Tomer Y. Sibling recurrence risk in autoimmune thyroid disease. Thyroid. 2003;13(8):761–4.
Article
CAS
PubMed
Google Scholar
Strieder TG, Prummel MF, Tijssen JG, Endert E, Wiersinga WM. Risk factors for and prevalence of thyroid disorders in a cross-sectional study among healthy female relatives of patients with autoimmune thyroid disease. Clin Endocrinol (Oxf). 2003;59(3):396–401.
Article
Google Scholar
Prummel MF, Strieder T, Wiersinga WM. The environment and autoimmune thyroid diseases. Eur J Endocrinol. 2004;150(5):605–18.
Article
CAS
PubMed
Google Scholar
Prummel MF, Wiersinga WM. Smoking and risk of Graves’ disease. JAMA. 1993;269(4):479–82.
Article
CAS
PubMed
Google Scholar
Brix TH, Kyvik KO, Christensen K, Hegedus L. Evidence for a major role of heredity in Graves’ disease: a population-based study of two Danish twin cohorts. J Clin Endocrinol Metab. 2001;86(2):930–4.
CAS
PubMed
Google Scholar
Brix TH, Christensen K, Holm NV, Harvald B, Hegedus L. A population-based study of Graves’ disease in Danish twins. Clin Endocrinol (Oxf). 1998;48(4):397–400.
Article
CAS
Google Scholar
Kavvoura FK, Akamizu T, Awata T, Ban Y, Chistiakov DA, Frydecka I, Ghaderi A, Gough SC, Hiromatsu Y, Ploski R, et al. Cytotoxic T-lymphocyte associated antigen 4 gene polymorphisms and autoimmune thyroid disease: a meta-analysis. J Clin Endocrinol Metab. 2007;92(8):3162–70.
Article
CAS
PubMed
Google Scholar
Furugaki K, Shirasawa S, Ishikawa N, Ito K, Kubota S, Kuma K, Tamai H, Akamizu T, Hiratani H, Tanaka M, et al. Association of the T-cell regulatory gene CTLA4 with Graves’ disease and autoimmune thyroid disease in the Japanese. J Hum Genet. 2004;49(3):166–8.
Article
CAS
PubMed
Google Scholar
Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT, Ball SG, James RA, Quinton R, Perros P, et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab. 2004;89(11):5862–5.
Article
CAS
PubMed
Google Scholar
Allahabadia A, Heward JM, Nithiyananthan R, Gibson SM, Reuser TT, Dodson PM, Franklyn JA, Gough SC. MHC class II region, CTLA4 gene, and ophthalmopathy in patients with Graves’ disease. Lancet. 2001;358(9286):984–5.
Article
CAS
PubMed
Google Scholar
Skorka A, Bednarczuk T, Bar-Andziak E, Nauman J, Ploski R. Lymphoid tyrosine phosphatase (PTPN22/LYP) variant and Graves’ disease in a Polish population: association and gene dose-dependent correlation with age of onset. Clin Endocrinol (Oxf). 2005;62(6):679–82.
Article
CAS
Google Scholar
Ichimura M, Kaku H, Fukutani T, Koga H, Mukai T, Miyake I, Yamada K, Koda Y, Hiromatsu Y. Associations of protein tyrosine phosphatase nonreceptor 22 (PTPN22) gene polymorphisms with susceptibility to Graves’ disease in a Japanese population. Thyroid. 2008;18(6):625–30.
Article
CAS
PubMed
Google Scholar
Kurylowicz A, Kula D, Ploski R, Skorka A, Jurecka-Lubieniecka B, Zebracka J, Steinhof-Radwanska K, Hasse-Lazar K, Hiromatsu Y, Jarzab B, et al. Association of CD40 gene polymorphism (C-1 T) with susceptibility and phenotype of Graves’ disease. Thyroid. 2005;15(10):1119–24.
Article
CAS
PubMed
Google Scholar
Tomer Y, Concepcion E, Greenberg DA. A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid. 2002;12(12):1129–35.
Article
CAS
PubMed
Google Scholar
Tomer Y, Huber A. The etiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmun. 2009;32(3–4):231–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brand OJ, Lowe CE, Heward JM, Franklyn JA, Cooper JD, Todd JA, Gough SC. Association of the interleukin-2 receptor alpha (IL-2Ralpha)/CD25 gene region with Graves’ disease using a multilocus test and tag SNPs. Clin Endocrinol (Oxf). 2007;66(4):508–12.
CAS
Google Scholar
Brand OJ, Barrett JC, Simmonds MJ, Newby PR, McCabe CJ, Bruce CK, Kysela B, Carr-Smith JD, Brix T, Hunt PJ, et al. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves’ disease. Hum Mol Genet. 2009;18(9):1704–13.
Article
CAS
PubMed
Google Scholar
Simmonds MJ. GWAS in autoimmune thyroid disease: redefining our understanding of pathogenesis. Nat Rev Endocrinol. 2013;9(5):277–87.
Article
CAS
PubMed
Google Scholar
Cooper JD, Simmonds MJ, Walker NM, Burren O, Brand OJ, Guo H, Wallace C, Stevens H, Coleman G, Franklyn JA, et al. Seven newly identified loci for autoimmune thyroid disease. Hum Mol Genet. 2012;21(23):5202–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand WH, Samani NJ, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007;39(11):1329–37.
Article
CAS
PubMed
Google Scholar
Nakabayashi K, Tajima A, Yamamoto K, Takahashi A, Hata K, Takashima Y, Koyanagi M, Nakaoka H, Akamizu T, Ishikawa N, et al. Identification of independent risk loci for Graves’ disease within the MHC in the Japanese population. J Hum Genet. 2011;56:772–8.
Article
CAS
PubMed
Google Scholar
Yarman S, Oguz F, Carin M. HLA-DRB1*03 is a susceptibility gene in patients with Graves’ disease with and without ophthalmopathy. Int J Immunogenet. 2007;34(1):23–5.
Article
CAS
PubMed
Google Scholar
Bednarczuk T, Gopinath B, Ploski R, Wall JR. Susceptibility genes in Graves’ ophthalmopathy: searching for a needle in a haystack? Clin Endocrinol (Oxf). 2007;67(1):3–19.
Article
CAS
Google Scholar
Esteghamati A, Khalilzadeh O, Mobarra Z, Anvari M, Tahvildari M, Amiri HM, Rashidi A, Solgi G, Parivar K, Nikbin B, et al. Association of CTLA-4 gene polymorphism with Graves’ disease and ophthalmopathy in Iranian patients. Eur J Intern Med. 2009;20(4):424–8.
Article
CAS
PubMed
Google Scholar
Buzzetti R, Nistico L, Signore A, Cascino I. CTLA-4 and HLA gene susceptibility to thyroid-associated orbitopathy. Lancet. 1999;354(9192):1824.
Article
CAS
PubMed
Google Scholar
Bednarczuk T, Hiromatsu Y, Fukutani T, Jazdzewski K, Miskiewicz P, Osikowska M, Nauman J. Association of cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) gene polymorphism and non-genetic factors with Graves’ ophthalmopathy in European and Japanese populations. Eur J Endocrinol. 2003;148(1):13–8.
Article
CAS
PubMed
Google Scholar
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.
Article
Google Scholar
Chu X, Pan CM, Zhao SX, Liang J, Gao GQ, Zhang XM, Yuan GY, Li CG, Xue LQ, Shen M, et al. A genome-wide association study identifies two new risk loci for Graves’ disease. Nat Genet. 2011;43(9):897–901.
Article
CAS
PubMed
Google Scholar
Craig JE, Hewitt AW, McMellon AE, Henders AK, Ma L, Wallace L, Sharma S, Burdon KP, Visscher PM, Montgomery GW, et al. Rapid inexpensive genome-wide association using pooled whole blood. Genome Res. 2009;19(11):2075–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burdon KP, Macgregor S, Bykhovskaya Y, Javadiyan S, Li X, Laurie KJ, Muszynska D, Lindsay R, Lechner J, Haritunians T, et al. Association of polymorphisms in the hepatocyte growth factor gene promoter with keratoconus. Invest Ophthalmol Vis Sci. 2011;52(11):8514–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Postula M, Janicki PK, Rosiak M, Kaplon-Cieslicka A, Trzepla E, Filipiak KJ, Kosior DA, Czlonkowski A, Opolski G. New single nucleotide polymorphisms associated with differences in platelets reactivity in patients with type 2 diabetes treated with acetylsalicylic acid: genome-wide association approach and pooled DNA strategy. J Thromb Thrombolysis. 2013;36(1):65–73.
Article
CAS
PubMed
Google Scholar
Teumer A, Ernst FD, Wiechert A, Uhr K, Nauck M, Petersmann A, Volzke H, Volker U, Homuth G. Comparison of genotyping using pooled DNA samples (allelotyping) and individual genotyping using the affymetrix genome-wide human SNP array 6.0. BMC Genomics. 2013;14:506.
Article
PubMed
PubMed Central
Google Scholar
Macgregor S, Zhao ZZ, Henders A, Nicholas MG, Montgomery GW, Visscher PM. Highly cost-efficient genome-wide association studies using DNA pools and dense SNP arrays. Nucleic Acids Res. 2008;36(6):e35.
Article
PubMed
PubMed Central
Google Scholar
Macgregor S. Most pooling variation in array-based DNA pooling is attributable to array error rather than pool construction error. Eur J Hum Genet. 2007;15(4):501–4.
Article
CAS
PubMed
Google Scholar
Lu Y, Dimasi DP, Hysi PG, Hewitt AW, Burdon KP, Toh T, Ruddle JB, Li YJ, Mitchell P, Healey PR, et al. Common genetic variants near the Brittle Cornea Syndrome locus ZNF469 influence the blinding disease risk factor central corneal thickness. PLoS Genet. 2010;6(5):e1000947.
Article
PubMed
PubMed Central
Google Scholar
Brown KM, Macgregor S, Montgomery GW, Craig DW, Zhao ZZ, Iyadurai K, Henders AK, Homer N, Campbell MJ, Stark M, et al. Common sequence variants on 20q11.22 confer melanoma susceptibility. Nat Genet. 2008;40(7):838–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kochi Y, Yamada R, Suzuki A, Harley JB, Shirasawa S, Sawada T, Bae SC, Tokuhiro S, Chang X, Sekine A, et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet. 2005;37(5):478–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maciel LM, Rodrigues SS, Dibbern RS, Navarro PA, Donadi EA. Association of the HLA-DRB1*0301 and HLA-DQA1*0501 alleles with Graves’ disease in a population representing the gene contribution from several ethnic backgrounds. Thyroid. 2001;11(1):31–5.
Article
CAS
PubMed
Google Scholar
Barlow AB, Wheatcroft N, Watson P, Weetman AP. Association of HLA-DQA1*0501 with Graves’ disease in English Caucasian men and women. Clin Endocrinol (Oxf). 1996;44(1):73–7.
Article
CAS
Google Scholar
Simmonds MJ, Heward JM, Carr-Smith J, Foxall H, Franklyn JA, Gough SC. Contribution of single nucleotide polymorphisms within FCRL3 and MAP3K7IP2 to the pathogenesis of Graves’ disease. J Clin Endocrinol Metab. 2006;91(3):1056–61.
Article
CAS
PubMed
Google Scholar
Newman WG, Zhang Q, Liu X, Walker E, Ternan H, Owen J, Johnson B, Greer W, Mosher DP, Maksymowych WP, et al. Rheumatoid arthritis association with the FCRL3 -169C polymorphism is restricted to PTPN22 1858 T-homozygous individuals in a Canadian population. Arthritis Rheum. 2006;54(12):3820–7.
Article
CAS
PubMed
Google Scholar
Eike MC, Nordang GB, Karlsen TH, Boberg KM, Vatn MH, Dahl-Jorgensen K, Ronningen KS, Joner G, Flato B, Bergquist A, et al. The FCRL3 -169 T > C polymorphism is associated with rheumatoid arthritis and shows suggestive evidence of involvement with juvenile idiopathic arthritis in a Scandinavian panel of autoimmune diseases. Ann Rheum Dis. 2008;67(9):1287–91.
Article
CAS
PubMed
Google Scholar
Zhao SX, Liu W, Zhan M, Song ZY, Yang SY, Xue LQ, Pan CM, Gu ZH, Liu BL, Wang HN, et al. A refined study of FCRL genes from a genome-wide association study for Graves’ disease. PLoS One. 2013;8(3):e57758.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis RS. Fc receptor-like molecules. Annu Rev Immunol. 2007;25:525–60.
Article
CAS
PubMed
Google Scholar
Miller I, Hatzivassiliou G, Cattoretti G, Mendelsohn C, Dalla-Favera R. IRTAs: a new family of immunoglobulinlike receptors differentially expressed in B cells. Blood. 2002;99(8):2662–9.
Article
CAS
PubMed
Google Scholar
Davis RS, Wang YH, Kubagawa H, Cooper MD. Identification of a family of Fc receptor homologs with preferential B cell expression. Proc Natl Acad Sci U S A. 2001;98(17):9772–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi CB, Kang CP, Seong SS, Bae SC, Kang C. The -169C/T polymorphism in FCRL3 is not associated with susceptibility to rheumatoid arthritis or systemic lupus erythematosus in a case–control study of Koreans. Arthritis Rheum. 2006;54(12):3838–41.
Article
CAS
PubMed
Google Scholar
Martinez A, Sanchez E, Valdivia A, Orozco G, Lopez-Nevot MA, Pascual-Salcedo D, Balsa A, Fernandez-Gutierrez B, de la Concha EG, Garcia-Sanchez A, et al. Epistatic interaction between FCRL3 and NFkappaB1 genes in Spanish patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65(9):1188–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu X, Chang M, Saiki RK, Cargill MA, Begovich AB, Ardlie KG, Criswell LA, Seldin MF, Amos CI, Gregersen PK, et al. The functional -169 T-- > C single-nucleotide polymorphism in FCRL3 is not associated with rheumatoid arthritis in white North Americans. Arthritis Rheum. 2006;54(3):1022–5.
Article
PubMed
Google Scholar
Hensley K, Venkova K, Christov A, Gunning W, Park J. Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications. Mol Neurobiol. 2011;43(3):180–91.
Article
CAS
PubMed
Google Scholar
Vincent P, Collette Y, Marignier R, Vuaillat C, Rogemond V, Davoust N, Malcus C, Cavagna S, Gessain A, Machuca-Gayet I, et al. A role for the neuronal protein collapsin response mediator protein 2 in T lymphocyte polarization and migration. J Immunol. 2005;175(11):7650–60.
Article
CAS
PubMed
Google Scholar
Varrin-Doyer M, Vincent P, Cavagna S, Auvergnon N, Noraz N, Rogemond V, Honnorat J, Moradi-Ameli M, Giraudon P. Phosphorylation of collapsin response mediator protein 2 on Tyr-479 regulates CXCL12-induced T lymphocyte migration. J Biol Chem. 2009;284(19):13265–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varrin-Doyer M, Nicolle A, Marignier R, Cavagna S, Benetollo C, Wattel E, Giraudon P. Human T lymphotropic virus type 1 increases T lymphocyte migration by recruiting the cytoskeleton organizer CRMP2. J Immunol. 2012;188(3):1222–33.
Article
CAS
PubMed
Google Scholar