St-Pierre NR, Cobanov B, Schnitkey G. Economic losses from heat stress by US livestock industries. J Dairy Sci. 2003;86:E52–77.
Article
Google Scholar
Renaudeau D, Collin A, Yahav S, de Basilio V, Gourdine JL, Collier RJ. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal. 2012;6:707–28.
Article
CAS
PubMed
Google Scholar
Aengwanich W, Simaraks S. Pathology of heart, lung, liver, and kidney in broiler under chronic heat stress. Songklanakarin J Sci Technol. 2004;26:417–24.
Google Scholar
Quinteiro-Filho WM, Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sakai M, Sá LR, Ferreira AJ, Palermo-Neto J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult Sci. 2010;89:1905–14.
Article
CAS
PubMed
Google Scholar
Huang C, Jiao H, Song Z, Zhao J, Wang X, Lin H. Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens. J Anim Sci. 2015;93:2144–53.
Article
CAS
PubMed
Google Scholar
Coble DJ, Fleming D, Persia ME, Ashwell CM, Rothschild MF, Schmidt CJ, Lamont SJ. RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature. BMC Genomics. 2014;15:1084.
Article
PubMed
PubMed Central
Google Scholar
Sun L, Lamont SJ, Cooksey AM, McCarthy F, Tudor CO, Vijay-Shanker K, DeRita RM, Rothschild M, Ashwell C, Persia ME, Schmidt CJ. Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line. Cell Stress Chaperones. 2015;20:939–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Goor A, Bolek KJ, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, Lamont SJ. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress. Genet Sel Evol. 2015;47:96.
Article
PubMed
PubMed Central
Google Scholar
Varasteh S, Braber S, Akbari P, Garssen J, Fink-Gremmels J. Differences in Susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLoS One. 2015;10:e0138975.
Article
PubMed
PubMed Central
Google Scholar
Lin H, Decuypere E, Buyse J. Acute heat stress induces oxidative stress in broiler chickens. Comp Biochem Physiol A Mol Integr Physiol. 2006;144:11–7.
Article
PubMed
Google Scholar
Tang X, Meng Q, Gao J, Zhang S, Zhang H. Label-free quantitative analysis of changes in broiler liver proteins under heat stress using SWATH-MS technology. Sci Rep. 2015;5:15119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie J, Tang L, Lu L, Zhang L, Xi L, Liu H-C, Odle J, Luo X. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus). PLoS One. 2014;9:e102204.
Article
PubMed
PubMed Central
Google Scholar
Yang L, Tan GY, Fu YQ, Feng JH, Zhang MH. Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comp Biochem Physiol C Toxicol Pharmacol. 2010;151:204–8.
Article
PubMed
Google Scholar
Hall DM, Buettner GR, Oberley LW, Xu L, Matthes RD, Gisolfi CV. Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am J Physiol Heart Circ Physiol. 2001;280:H509–21.
CAS
PubMed
Google Scholar
Hai L, Rong D, Zhang Z-Y. The effect of thermal environment on the digestion of broilers. J Anim Physiol Anim Nutr. 2000;83:57–64.
Article
Google Scholar
Farrell DJ, Swain S. Effects of temperature treatments on the energy and nitrogen metabolism of fed chickens. Br Poult Sci. 1977;18:735–48.
Article
CAS
PubMed
Google Scholar
Ingenuity IPA - Integrate and understand complex ’omics data. 2015. http://www.ingenuity.com/products/ipa. Accessed 10 Dec 2015.
Van Goor A, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, Lamont SJ. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress. BMC Genomics. 2016;17:287.
Article
PubMed
PubMed Central
Google Scholar
Sun H, Liu P, Nolan LK, Lamont SJ. Avian pathogenic Escherichia coli (APEC) infection alters bone marrow transcriptome in chickens. BMC Genomics. 2015;16:690.
Article
PubMed
PubMed Central
Google Scholar
Babraham Bioinformatics - FastQC - A quality control tool for high throughput sequence data. 2015. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 10 Oct 2015.
FASTX-Toolkit. 2015. http://hannonlab.cshl.edu/fastx_toolkit. Accessed 10 Oct 2015.
Robinson M, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.
Article
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krämer A, Green J, Pollard J, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30:523–30.
Article
PubMed
Google Scholar
Svec D, Tichopad A, Novosadova V, Pfaffl MW, Kubista M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif. 2015;3:9–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu H, Nguyen YT, Nettleton D, Dekkers JC, Tuggle CK. Post-weaning blood transcriptomic differences between Yorkshire pigs divergently selected for residual feed intake. BMC Genomics. 2016;17:73.
Article
PubMed
PubMed Central
Google Scholar
Mujahid A, Sato K, Akiba Y, Toyomizu M. Acute heat stress stimulates mitochondrial superoxide production in broiler skeletal muscle, possibly via downregulation of uncoupling protein content. Poult Sci. 2006;85:1259–65.
Article
CAS
PubMed
Google Scholar
Mujahid A, Pumford NR, Bottje W, Nakagawa K, Miyazawa T, Akiba Y, Toyomizu M. Mitochondrial oxidative damage in chicken skeletal muscle induced by acute heat stress. J Poult Sci. 2007;44:439–45.
Article
CAS
Google Scholar
Xie J, Tang L, Lu L, Zhang L, Lin X, Liu H-C, Odle J, Luo X. Effects of acute and chronic heat stress on plasma metabolites, hormones and oxidant status in restrictedly fed broiler breeders. Poult Sci. 2015;94:1635–44.
Article
PubMed
Google Scholar
Azad MA, Kikusato M, Maekawa T, Shirakawa H, Toyomizu M. Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comp Biochem Physiol A Mol Integr Physiol. 2010;155:401–6.
Article
CAS
PubMed
Google Scholar
Altan Ö, Pabuçcuoğlu A, Altan A, Konyalioğlu S, Bayraktar H. Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br Poult Sci. 2003;44:545–50.
Article
CAS
PubMed
Google Scholar
Zuo J, Xu M, Abdullahi YA, Ma L, Zhang Z, Feng D. Constant heat stress reduces skeletal muscle protein deposition in broilers. J Sci Food Agric. 2015;95:429–36.
Article
CAS
PubMed
Google Scholar
Khajavi M, Rahimi S, Hassan ZM, Kamali MA, Mousavi T. Effect of feed restriction early in life on humoral and cellular immunity of two commercial broiler strains under heat stress conditions. Br Poult Sci. 2003;44:490–7.
Article
CAS
PubMed
Google Scholar
Robertson JD, Datta K, Kehrer JP. Bcl-xL overexpression restricts heat-induced apoptosis and influences hsp70, bcl-2, and Bax protein levels in FL5. 12 cells. Biochem Biophys Res Commun. 1997;241:164–8.
Article
CAS
PubMed
Google Scholar
Li L, Tan H, Gu Z, Liu Z, Geng Y, Liu Y, Tong H, Tang Y, Qiu J, Su L. Heat stress induces apoptosis through a Ca2 + -mediated mitochondrial apoptotic pathway in human umbilical vein endothelial cells. PLoS One. 2014;9:e111083.
Article
PubMed
PubMed Central
Google Scholar
Bartlett JR, Smith MO. Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poult Sci. 2003;82:1580–8.
Article
CAS
PubMed
Google Scholar
Wu D, Xu J, Song E, Tang S, Zhang X, Kemper N, Hartung J, Bao E. Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression. Cell Stress Chaperones. 2015;20:687–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ravikumar RK, Kinhekar AS, Ingle VC, Sonkusale P, Awandkar SP, Tembhurne PA, Kumar V. Effect of heat stress on haematological and immunological parameters in broiler chicken. Indian J Vet Sci Biotechnol. 2016;11:40–2.
Google Scholar
Zhu P, Goh YY, Chin HFA, Kersten S, Tan NS. Angiopoietin-like 4: a decade of research. Biosci Rep. 2012;32:211–9.
Article
CAS
PubMed
Google Scholar
Soleimani AF, Zulkifli I, Omar AR, Raha AR. Physiological responses of 3 chicken breeds to acute heat stress. Poult Sci. 2011;90:1435–40.
Article
CAS
PubMed
Google Scholar
Ropp M, Courgeon AM, Calvayrac R, Best-Belpomme M. The possible role of the superoxide ion in the induction of heat-shock and specific proteins in aerobic Drosophila cells during return to normoxia after a period of anaerobiosis. Can J Biochem Cell Biol. 1983;61:456–61.
Article
CAS
PubMed
Google Scholar
Ito A, Shinkai M, Honda H, Kobayashi T. Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther. 2001;8:649–54.
Article
CAS
PubMed
Google Scholar
Pearce SC, Lonergan SM, Huff-Lonergan E, Baumgard LH, Gabler NK. Acute heat stress and reduced nutrient intake alter intestinal proteomic profile and gene expression in pigs. PLoS One. 2015;10:e0143099.
Article
PubMed
PubMed Central
Google Scholar
Mashaly MM, Hendricks 3rd GL, Kalama MA, Gehad AE, Abbas AO, Patterson PH. Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult Sci. 2004;83:889–94.
Article
CAS
PubMed
Google Scholar
Moulin M, Arrigo AP. Long lasting heat shock stimulation of TRAIL-induced apoptosis in transformed T lymphocytes. Exp Cell Res. 2006;312:1765–84.
Article
CAS
PubMed
Google Scholar
Park HG, Han SI, Oh SY, Kang HS. Cellular responses to mild heat stress. Cell Mol Life Sci. 2005;62:10–23.
Article
CAS
PubMed
Google Scholar
Beere HM. Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J Clin Invest. 2005;115:2633–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moseley P. Stress proteins and the immune response. Immunopharmacology. 2000;48:299–302.
Article
CAS
PubMed
Google Scholar
Feng H, Zeng Y, Whitesell L, Katsanis E. Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood. 2001;97:3505–12.
Article
CAS
PubMed
Google Scholar
Wallin RP, Lundqvist A, Moré SH, von Bonin A, Kiessling R, Ljunggren HG. Heat-shock proteins as activators of the innate immune system. Trends Immunol. 2002;23:130–5.
Article
CAS
PubMed
Google Scholar
Tsan MF, Gao B. Heat shock proteins and immune system. J Leukoc Biol. 2009;85:905–10.
Article
CAS
PubMed
Google Scholar
Calderwood SK, Theriault JR, Gong J. How is the immune response affected by hyperthermia and heat shock proteins? Int J Hyperthermia. 2005;21:713–6.
Article
CAS
PubMed
Google Scholar
Basu S, Srivastava PK. Heat shock proteins: the fountainhead of innate and adaptive immune responses. Cell Stress Chaperones. 2000;5:443–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol. 2002;2:185–94.
Article
CAS
PubMed
Google Scholar
Chen T, Guo J, Han C, Yang M, Cao X. Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol. 2009;182:1449–59.
Article
CAS
PubMed
Google Scholar
Udono H, Srivastava PK. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J Immunol. 1994;152:5398–403.
CAS
PubMed
Google Scholar
Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol. 2002;92:2177–86.
Article
CAS
PubMed
Google Scholar
Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst. 2000;92:1564–72.
Article
CAS
PubMed
Google Scholar
Panayi GS, Corrigall VM, Henderson B. Stress cytokines: pivotal proteins in immune regulatory networks; Opinion. Curr Opin Immunol. 2004;16:531–4.
Article
CAS
PubMed
Google Scholar
Pockley AG. Heat shock proteins as regulators of the immune response. Lancet. 2003;362:469–76.
Article
CAS
PubMed
Google Scholar