Keller C, Steensberg A, Pilegaard H, Osada T, Saltin B, Pedersen BK, Neufer PD. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J Official Pub Fed Am Soc Exp Biol. 2001;15(14):2748–50.
CAS
Google Scholar
McGee SL, Sparling D, Olson AL, Hargreaves M. Exercise increases MEF2- and GEF DNA-binding activity in human skeletal muscle. FASEB J Official Pub Fed Am Soc Exp Biol. 2006;20(2):348–9.
CAS
Google Scholar
Barres R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O’Gorman DJ, Zierath JR. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405–11.
Article
CAS
PubMed
Google Scholar
Nakajima K, Takeoka M, Mori M, Hashimoto S, Sakurai A, Nose H, Higuchi K, Itano N, Shiohara M, Oh T, et al. Exercise effects on methylation of ASC gene. Int J Sports Med. 2010;31(9):671–5.
Article
CAS
PubMed
Google Scholar
McGee SL, Fairlie E, Garnham AP, Hargreaves M. Exercise-induced histone modifications in human skeletal muscle. J Physiol. 2009;587(Pt 24):5951–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Kevin C, Chang Howard Y. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun M, Kraus WL. From discovery to function: the expanding roles of long NonCoding RNAs in physiology and disease. Endocr Rev. 2015;36(1):25–64.
Article
CAS
PubMed
Google Scholar
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.
Article
CAS
PubMed
Google Scholar
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in caenorhabditis elegans. Nature. 2000;403(6772):901–6.
Article
CAS
PubMed
Google Scholar
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.
Article
CAS
PubMed
Google Scholar
Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol. 2009;10(2):141–8.
Article
CAS
PubMed
Google Scholar
Butchart LC, Fox A, Shavlakadze T, Grounds MD: The long and short of non-coding RNAs during post-natal growth and differentiation of skeletal muscles: Focus on lncRNA and miRNAs. Differentiation; research in biological diversity 2016;92(5):237–48.
Brennecke J, Stark A, Russell RB, Cohen SM. Principles of MicroRNA–target recognition. PLoS Biol. 2005;3(3):e85.
Article
PubMed
PubMed Central
Google Scholar
Hu Z, Bruno AE: The Influence of 3‘UTRs on MicroRNA Function Inferred from Human SNP Data. Comparative & Functional Genomics 2011;910769:1–9.
Huili G, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835–40.
Article
Google Scholar
Humphreys DT, Westman BJ, Martin DIK, Preiss T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly (A) tail function. (English). Proc Natl Acad Sci U S A. 2005;102(47):16961–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 2005;309(5740):1573–6.
Article
CAS
PubMed
Google Scholar
Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: MicroRNAs Can Up-regulate translation. Science. 2007;318(5858):1931–4.
Article
CAS
PubMed
Google Scholar
Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G. Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol. 2007;4(2):76–84.
Article
CAS
PubMed
Google Scholar
Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian MicroRNA targets. Cell. 2003;115(7):787–98.
Article
CAS
PubMed
Google Scholar
Dweep H, Sticht C, Pandey P, Gretz N. MiRWalk – database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44(5):839–47.
Article
CAS
PubMed
Google Scholar
Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697.
Article
CAS
PubMed
Google Scholar
Zacharewicz E, Lamon S, Russell AP. MicroRNAs in skeletal muscle and their regulation with exercise, ageing, and disease. Front Physiol. 2013;4:266.
Article
PubMed
PubMed Central
Google Scholar
Gokhin DS, Ward SR, Bremner SN, Lieber RL. Quantitative analysis of neonatal skeletal muscle functional improvement in the mouse. J Exp Biol. 2008;211(Pt 6):837–43.
Article
CAS
PubMed
Google Scholar
Ontell M, Feng KC, Klueber K, Dunn RF, Taylor F. Myosatellite cells, growth, and regeneration in murine dystrophic muscle: a quantitative study. Anat Rec. 1984;208(2):159–74.
Article
CAS
PubMed
Google Scholar
White RB, Bierinx AS, Gnocchi VF, Zammit PS. Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol. 2010;10:21.
Article
PubMed
PubMed Central
Google Scholar
Duddy W, Duguez S, Johnston H, Cohen TV, Phadke A, Gordish-Dressman H, Nagaraju K, Gnocchi V, Low S, Partridge T. Muscular dystrophy in the mdx mouse is a severe myopathy compounded by hypotrophy, hypertrophy and hyperplasia. Skelet Muscle. 2015;5:16.
Article
PubMed
PubMed Central
Google Scholar
Grounds MD, McGeachie JK. A comparison of muscle precursor replication in crush-injured skeletal muscle of Swiss and BALBc mice. Cell Tissue Res. 1989;255(2):385–91.
Article
CAS
PubMed
Google Scholar
Rai M, Nongthomba U, Grounds MD. Skeletal muscle degeneration and regeneration in mice and flies. Curr Top Dev Biol. 2014;108:247–81.
Article
CAS
PubMed
Google Scholar
Perry RL, Rudnick MA. Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci. 2000;5:D750–767.
Article
CAS
PubMed
Google Scholar
Buckingham M. Skeletal muscle progenitor cells and the role of Pax genes. C R Biol. 2007;330(6–7):530–3.
Article
CAS
PubMed
Google Scholar
Buckingham M, Relaix F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol. 2015;44:115–25.
Article
CAS
PubMed
Google Scholar
Güller I, Russell AP. MicroRNAs in skeletal muscle: their role and regulation in development, disease and function. J Physiol. 2010;588(21):4075–87.
Article
PubMed
PubMed Central
Google Scholar
Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A. 2006;103(23):8721–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenberg MI, Georges SA, Asawachaicharn A, Analau E, Tapscott SJ. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol. 2006;175(1):77–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang D-Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38(2):228–33.
Article
CAS
PubMed
Google Scholar
Alonso-Martin S, Rochat A, Mademtzoglou D, Morais J, de Reynies A, Aurade F, Chang TH, Zammit PS, Relaix F. Gene expression profiling of muscle stem cells identifies novel regulators of postnatal myogenesis. Front Cell Dev Biol. 2016;4:58.
Article
PubMed
PubMed Central
Google Scholar
Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, Vandesompele J. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009;10(6):R64.
Article
PubMed
PubMed Central
Google Scholar
D’Haene B, Mestdagh P, Hellemans J, Vandesompele J. miRNA expression profiling: from reference genes to global mean normalization. Methods Mol Biol. 2012;822:261–72.
Article
PubMed
Google Scholar
Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM. GenStat for Windows (12th Edition) Introduction. Hemel Hempstead: VSN International; 2009.
Callis TE, Deng Z, Chen J-F, Wang D-Z. Muscling through the microRNA world. Exp Biol Med. 2008;233(2):131–8.
Article
CAS
Google Scholar
Mei Q, Li X, Meng Y, Wu Z, Guo M, Zhao Y, Fu X, Han W. A facile and specific assay for quantifying microRNA by an optimized RT-qPCR approach. PLoS One. 2012;7(10):e46890.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C, Cheo D, D’Andrade P, DeMayo M, Dennis L, et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods. 2014;11(8):809–15.
Article
CAS
PubMed
Google Scholar
Brattelid T, Aarnes EK, Helgeland E, Guvaag S, Eichele H, Jonassen AK. Normalization strategy is critical for the outcome of miRNA expression analyses in the rat heart. Physiol Genomics. 2011;43(10):604–10.
Article
CAS
PubMed
Google Scholar
Meyer SU, Kaiser S, Wagner C, Thirion C, Pfaffl MW. Profound effect of profiling platform and normalization strategy on detection of differentially expressed microRNAs--a comparative study. PLoS One. 2012;7(6):e38946.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A. 2006;103(8):2746–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol. 2007;102(1):306–13.
Article
CAS
PubMed
Google Scholar
Chen J-F, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang D-Z. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol. 2010;190(5):867–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chapman MA, Meza R, Lieber RL: Skeletal muscle fibroblasts in health and disease. Differentiation; research in biological diversity 2016;92(3):108–15.
Bruusgaard JC, Gundersen K. In vivo time-lapse microscopy reveals no loss of murine myonuclei during weeks of muscle atrophy. J Clin Invest. 2008;118(4):1450–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmalbruch H, Hellhammer U. The number of nuclei in adult rat muscles with special reference to satellite cells. Anat Rec. 1977;189(2):169–75.
Article
CAS
PubMed
Google Scholar
Kirby TJ, Patel RM, McClintock TS, Dupont-Versteegden EE, Peterson CA, McCarthy JJ. Myonuclear transcription is responsive to mechanical load and DNA content but uncoupled from cell size during hypertrophy. Mol Biol Cell. 2016;27(5):788–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chikenji A, Ando H, Nariyama M, Suga T, Iida R, Gomi K. MyoD is regulated by the miR-29a-Tet1 pathway in C2C12 myoblast cells. J Oral Sci. 2016;58(2):219–29.
Article
PubMed
Google Scholar
Hu Z, Klein JD, Mitch WE, Zhang L, Martinez I, Wang XH. MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways. Aging (Albany NY). 2014;6(3):160–75.
Article
CAS
PubMed Central
Google Scholar
Wei W, He HB, Zhang WY, Zhang HX, Bai JB, Liu HZ, Cao JH, Chang KC, Li XY, Zhao SH. miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death Dis. 2013;4:e668.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexander MS, Kawahara G, Motohashi N, Casar JC, Eisenberg I, Myers JA, Gasperini MJ, Estrella EA, Kho AT, Mitsuhashi S, et al. MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death Differ. 2013;20(9):1194–208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greco S, Simone MD, Colussi C, Zaccagnini G, Fasanaro P, Pescatori M, Cardani R, Perbellini R, Isaia E, Sale P, et al. Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB J. 2009;23(10):3335–46.
Article
CAS
PubMed
Google Scholar
Russell AP, Wada S, Vergani L, Hock MB, Lamon S, Leger B, Ushida T, Cartoni R, Wadley GD, Hespel P, et al. Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis. 2012;49C:107–17.
Google Scholar
Liu X, Cheng Y, Chen X, Yang J, Xu L, Zhang C. MicroRNA-31 regulated by the extracellular regulated kinase is involved in vascular smooth muscle cell growth via large tumor suppressor homolog 2. J Biol Chem. 2011;286(49):42371–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russell AP, Lamon S, Boon H, Wada S, Guller I, Brown EL, Chibalin AV, Zierath J, Snow RJ, Stepto NK et al.: Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short term endurance training. The Journal of physiology 2013;591(18):4637–53.
Cacchiarelli D, Incitti T, Martone J, Cesana M, Cazzella V, Santini T, Sthandier O, Bozzoni I. miR-31 modulates dystrophin expression: new implications for duchenne muscular dystrophy therapy. EMBO Rep. 2011;12(2):136–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ichihara A, Wang Z, Jinnin M, Izuno Y, Shimozono N, Yamane K, Fujisawa A, Moriya C, Fukushima S, Inoue Y, et al. Upregulation of miR-18a-5p contributes to epidermal necrolysis in severe drug eruptions. J Allergy Clin Immunol. 2014;133(4):1065–74.
Article
CAS
PubMed
Google Scholar
Kee HJ, Kim GR, Cho S-N, Kwon J-S, Ahn Y, Kook H, Jeong MH. miR-18a-5p MicroRNA increases vascular smooth muscle cell differentiation by downregulating Syndecan4. Kor Circulation J. 2014;44(4):255–63.
Article
CAS
Google Scholar
Peng Y, Xiang H, Chen C, Zheng R, Chai J, Peng J, Jiang S. MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int J Biochem Cell Biol. 2013;45(8):1585–93.
Article
CAS
PubMed
Google Scholar
Kim JY, Park YK, Lee KP, Lee SM, Kang TW, Kim HJ, Dho SH, Kim SY, Kwon KS. Genome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with aging. Aging (Albany NY). 2014;6(7):524–44.
Article
CAS
PubMed Central
Google Scholar
Zhou B, Liu HL, Shi FX, Wang JY. MicroRNA expression profiles of porcine skeletal muscle. Anim Genet. 2010;41(5):499–508.
Article
CAS
PubMed
Google Scholar
Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell. 2009;36(1):61–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Luo XJ, Xiong AW, Zhang ZD, Yue S, Zhu MS, Cheng SY. MicroRNA-214 promotes myogenic differentiation by facilitating exit from mitosis via down-regulation of proto-oncogene N-ras. J Biol Chem. 2010;285(34):26599–607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basu U, Lozynska O, Moorwood C, Patel G, Wilton SD, Khurana TS. Translational regulation of utrophin by miRNAs. PLoS One. 2011;6(12):e29376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perkins KJ, Davies KE. The role of utrophin in the potential therapy of duchenne muscular dystrophy. Neuromuscular Dis NMD. 2002;12 Suppl 1:S78–89.
Article
Google Scholar
Tay YM, Tam WL, Ang YS, Gaughwin PM, Yang H, Wang W, Liu R, George J, Ng HH, Perera RJ, et al. MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells. 2008;26(1):17–29.
Article
CAS
PubMed
Google Scholar
Gaughwin P, Ciesla M, Yang H, Lim B, Brundin P. Stage-specific modulation of cortical neuronal development by Mmu-miR-134. Cereb Cortex. 2011;21(8):1857–69.
Article
PubMed
Google Scholar
Chen Y, Melton DW, Gelfond JA, McManus LM, Shireman PK. MiR-351 transiently increases during muscle regeneration and promotes progenitor cell proliferation and survival upon differentiation. Physiol Genomics. 2012;44(21):1042–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Conboy I. Embryonic vs. adult myogenesis: challenging the ‘regeneration recapitulates development’ paradigm. J Mol Cell Biol. 2010;2(1):1–4.
Article
PubMed
Google Scholar