Rooney W, Blumenthal J, Bean B, Mullet J. Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Bioref. 2007;1(2):147–57.
Article
CAS
Google Scholar
Vermerrism W, Saballos A, Ejeta G, Mosier N, Ladisch M, Carpita N. Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci. 2007;47(Supplement_3):S142–153.
Google Scholar
Menz M, Klein R, Mullet J, Obert J, Unruh N, Klein P. A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol. 2002;48(5–6):483–99.
Article
CAS
PubMed
Google Scholar
Kong W, Jin H, Franks C, Kim C, Bandopadhyay R, Rana M, Auckland S, Goff V, Rainville L, Burow G. Genetic analysis of recombinant inbred lines for Sorghum bicolor × Sorghum propinquum. G3: Genes Genomes Genet. 2013;3(1):101–8.
Article
CAS
Google Scholar
Ejeta G, Kenoll J. Marker-assisted selection in sorghum. In: Varshney RK, Tuberosa R, editors. Genomics-assisted crop improvement. Neserlands: Springer; 2007. p. 187–205.
Chapter
Google Scholar
Singh H, Lohithaswa H. Genome mapping and molecular breeding in plants, Cereals and Millets. In: Kole C, editor. Sorghum. Berlin Heidelberg: Springer Verlag; 2006.
Chapter
Google Scholar
Hulbert S, Richter T, Axtell J, Bennetzen J. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci U S A. 1990;87(11):4251–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berhan A, Hulbert S, Butler L, Bennetzen J. Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theo Appl Genet. 1993;86(5):598–604.
Article
CAS
Google Scholar
Peng Y, Schertz K, Cartinhour S, Hart G. Comparative genome mapping of Sorghum bicolor (L.) Moench using an RFLP map constructed in a population of recombinant inbred lines. Plant Breed. 1999;118(3):225–35.
Article
CAS
Google Scholar
Boivin K, Deu M, Rami J-F, Trouche G, Hamon P. Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet. 1999;98(2):320–8.
Article
CAS
Google Scholar
Kong L, Dong J, Har tG. Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet. 2000;101(3):438–48.
Article
CAS
Google Scholar
Taramino G, Tarchini R, Ferrario S, Lee M. Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet. 1997;95(1–2):66–72.
Article
CAS
Google Scholar
Yonemaru J, Ando T, Mizubayashi T, Kasuga S, Matsumoto T, Yano M. Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum (Sorghum bicolor (L.) Moench). DNA Res. 2009;16(3):187–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramu P, Kassahun B, Senthilvel S, Kumar C, Jayashree B, Folkertsma R, Reddy L, Kuruvinashetti M, Haussmann B, Hash C. Exploiting rice–sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. Theor Appl Genet. 2009;119(7):1193–204.
Article
CAS
PubMed
Google Scholar
Tao Y, Jordan D, Henzell R, McIntyre C. Construction of a genetic map in a sorghum recombinant inbred line using probes from different sources and its comparison with other sorghum maps. Aust J Agri Res. 1998;49(5):729–36.
Article
CAS
Google Scholar
Xu J, Weerasuriya Y, Bennetzen J. Construction of genetic map in sorghum and fine mapping of the germination stimulant production gene response to Striga asiatica. Acta Genet Sin. 2000;28(9):870–6.
Google Scholar
Moens P, Wu Y, Huang Y. An SSR genetic map of Sorghum bicolor (L.) Moench and its comparison to a published genetic map. Genome. 2006;50(1):84–9.
Article
Google Scholar
Guan Y, Wang H, Qin L, Zhang H, Yang Y, Gao F, Li E, Wang HG. QTL mapping of bio-energy related traits in Sorghum. Euphytica. 2011;182(3):431–40.
Article
Google Scholar
Mace E, Rami J, Bouchet S, Klein P, Klein R, Kilian A, Wenz lP, Xia L, Halloran K, Jordan D. A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol. 2009;9(1):1.
Article
Google Scholar
Bhatia D, Wing R, Singh K. Genotyping by sequencing, its implications and benefits. Crop Impro. 2013;40(2):101–11.
Google Scholar
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One. 2013;8(3):e58700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai H, Cao Y, Quan J, Dong L, Li Z, Zhu Y, Zhu L, Dong Z, Li D. Identifying the genome-wide sequence variations and developing new molecular markers for genetics research by re-sequencing a landrace cultivar of foxtail millet. PLoS One. 2013;8(9):e73514.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu L, Chen X, Wang Z, Wang S, Wang Y, Zhu Q, Li S, Xiang C. Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol. 2013;162(3):1378–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol. 2013;13(1):141.
Article
PubMed
PubMed Central
Google Scholar
Li B, Tian L, Zhang J, Huang L, Han F, Yan S, Wang L, Zheng H, Sun J. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics. 2014;15(1):1.
Article
Google Scholar
Qi Z, Huang L, Zhu R, Xin D, Liu C, Han X, Jiang H, Hong W, Hu G, Zheng H. A high-density genetic map for soybean based on specific length amplified fragment sequencing. PLoS One. 2014;9(8):e104871.
Article
PubMed
PubMed Central
Google Scholar
Cregan P, Jarvik T, Bush A, Shoemaker R, Lark K, Kahler A, Kaya N, VanToai T, Lohnes D, Chung J. An integrated genetic linkage map of the soybean. Crop Sci. 1999;39:1464–90.
Article
CAS
Google Scholar
Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet. 2002;105:622–8.
Article
CAS
PubMed
Google Scholar
Li H, Kilian A, Zhou M, Wenzl P, Huttner E, Mendham N, McIntyre L, Vaillancourt R. Construction of a high-density composite map and comparative mapping of segregation distortion regions in barley. Mol Genet Genomics. 2010;284(5):319–31.
Article
CAS
PubMed
Google Scholar
Tai G, Seabrook J, Aziz A. Linkage analysis of anther-derived monoploids showing distorted segregation of molecular markers. Theor Appl Genet. 2000;101:126–30.
Article
CAS
Google Scholar
Lei Y, Yan L, Jiang H. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics. 2014;15:351.
Article
PubMed
PubMed Central
Google Scholar
Zhang L, Wang S, Li H, Deng Q, Zheng A, Li S, Li P, Li Z, Wang J. Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet. 2010;121(6):1071–108.
Article
PubMed
Google Scholar
Xu S, Hu Z. Mapping quantitative trait Loci using distorted markers. J Plant Genomics. 2009;2009:410825.
Google Scholar
Doyle J, Doyle J. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull. 1987;19(11):11–5.
Google Scholar
Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24(5):713–4.
Article
CAS
PubMed
Google Scholar
Zhang J, Zhang Q, Cheng T, Yang WR, Pan H, Zhong J, Huang L, Liu E. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc). DNA Res. 2015;22(3):183–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paterson A, Bowers J, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457(7229):551–6.
Article
CAS
PubMed
Google Scholar
Van OJ. Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res (Camb). 2011;93(05):343–9.
Article
Google Scholar
Jansen J, De Jong A, Van Ooijen J. Constructing dense genetic linkage maps. Theor App Genet. 2001;102(6–7):1113–22.
Article
CAS
Google Scholar
Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J. Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS One. 2014;9(6):e98855.
Article
PubMed
PubMed Central
Google Scholar
van Os H, Stam P, Visser R, van Eck H. SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor Appl Genet. 2005;112(1):187–94.
Article
CAS
PubMed
Google Scholar
Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet. 2012;44(1):32–9.
Article
Google Scholar
Kosambi. The estimation of map distances from recombination values. Ann Eugen. 1944;12(1):172–5.
Article
Google Scholar