Perata P, Armstrong W, Voesenek LACJ. Plants and flooding stress. New Phytol. 2011;190(2):269–73.
Article
PubMed
Google Scholar
Peeters AJM, Cox MCH, Benshop JJ, Vreeburg RAM, Bou J, Voesenek LACJ. Submergence research using Rumex palustris as a model: looking back and going forward. J Exp Bot. 2002;53(368):391–8.
Article
CAS
PubMed
Google Scholar
Fukao T, Bailey-Serres J. Plant responses to hypoxia – is survival a balancing act? Trends Plant Sci. 2004;9(9):449–56.
Article
CAS
PubMed
Google Scholar
Bailey-Serres J, Voesenek LACJ. Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol. 2008;59(59):313–39.
Article
CAS
PubMed
Google Scholar
Voesenek LACJ, Bailey-Serres J. Flood adaptive traits and processes: an overview. New Phytol. 2015;206(1):57–73.
Article
CAS
PubMed
Google Scholar
Vreeburg RAM, Benschop JJ, Peeters AJM, Colmer TD, Ammerlaan AHM, Staal M, Elzenga TM, Staals RHJ, Darley CP, McQueen-Mason SJ, et al. Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris. Plant J. 2005;43(4):597–610.
Article
CAS
PubMed
Google Scholar
Hossain MA, Uddin SN. Mechanisms of waterlogging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia. Aust J Crop Sci. 2011;5(9):1094–101.
CAS
Google Scholar
Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M. Mechanisms for coping with submergence and waterlogging in rice. Rice. 2012;5(1):2.
Article
PubMed
PubMed Central
Google Scholar
Yu F, Han X, Geng C, Zhao Y, Zhang Z, Qiu F. Comparative proteomic analysis revealing the complex network associated with waterlogging stress in maize (Zea mays. L) seedling root cells. Proteomics. 2014;15(1):135–47.
Article
PubMed
Google Scholar
Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature. 2009;460(7258):1026–30.
Article
CAS
PubMed
Google Scholar
Barrett SC, Eckert CG, Husband BC. Evolutionary processes in aquatic plant populations. Aquat Bot. 1993;44:105–45.
Article
Google Scholar
Ho TNO, Ornduff RM. Menyanthaceae in Flora of China, vol 16. Beijing and St. Louis: Science Press and Missouri Botanical Garden Press; 1995.
Google Scholar
Ridge I, Amarasinghe I. Ethylene and growth control in the fringed waterlily (Nymphoides peltata): Stimulation of cell division and interaction with buoyant tension in petioles. Plant Growth Regul. 1984;2(3):235–49.
Article
CAS
Google Scholar
Yu L, Yu D. Differential responses of the floating-leaved aquatic plant Nymphoides peltata to gradual versus rapid increases in water levels. Aquat Bot. 2011;94(2):71–6.
Article
Google Scholar
Cookson C, Osborne D. The stimulation of cell extension by ethylene and auxin in aquatic plants. Planta. 1978;144(1):39–47.
Article
CAS
PubMed
Google Scholar
Uesugi R, Tani N, Goka K, Nishihiro J, Tsumura Y, Washitani I. Isolation and characterization of highly polymorphic microsatellites in the aquatic plant, Nymphoides peltata (Menyanthaceae). Mol Ecol Notes. 2005;5(2):343–5.
Article
CAS
Google Scholar
Liao YY, Yue XL, Guo YH, Gituru WR, Wang QF, Chen JM. Genotypic diversity and genetic structure of populations of the distylous aquatic plant Nymphoides peltata (Menyanthaceae) in China. J Syst Evol. 2013;51(5):536–44.
Article
Google Scholar
Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008;18:1509–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong C-H, Li C, Yan X-H, Huang S-M, Huang J-Y, Wang L-J, Guo R-X, Lu G-Y, Zhang X-K, Fang X-P, et al. Gene expression profiling of Sinapis alba leaves under drought stress and rewatering growth conditions with Illumina deep sequencing. Mol Biol Rep. 2012;39(5):5851–7.
Article
CAS
PubMed
Google Scholar
Pang T, Ye CY, Xia X, Yin W. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. BMC Genomics. 2013;14(488):1471–2164.
Google Scholar
van Veen H, Mustroph A, Barding GA, Vergeer-van Eijk M, Welschen-Evertman RA, Pedersen O, Visser E, Larive C, Pierik R, Bailey-Serres J, et al. Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms. Plant Cell. 2013;25(11):4691–707.
Article
PubMed
PubMed Central
Google Scholar
Qi B, Yang Y, Yin Y, Xu M, Li H. De novo sequencing, assembly, and analysis of the Taxodium ‘Zhongshansa’ roots and shoots transcriptome in response to short-term waterlogging. BMC Plant Biol. 2014;14(1):201.
Article
PubMed
PubMed Central
Google Scholar
Maurino VG, Grube E, Zielinski J, Schild A, Fischer K, Flügge UI. Identification and expression analysis of twelve members of the nucleobase–ascorbate transporter (NAT) gene family in Arabidopsis thaliana. Plant Cell Physiol. 2006;47(10):1381–93.
Article
CAS
PubMed
Google Scholar
Satoh M, Tokaji Y, Nagano AJ, Hara-Nishimura I, Hayashi M, Nishimura M, Ohta H, Masuda S. Arabidopsis mutants affecting oxylipin signaling in photo-oxidative stress responses. Plant Physiol Bioch. 2014;81:90–5.
Article
CAS
Google Scholar
Bowler C, Montagu MV, Inze D. Superoxide dismutase and stress tolerance. Annu Rev Plant Bio. 1992;43:83–116.
Article
CAS
Google Scholar
Gautam P, Lal B, Raja R, Baig MJ, Haldar D, Rath L, Shahid M, Tripathi R, Mohanty S, Bhattacharyya P, et al. Post–flood nitrogen and basal phosphorus management affects survival, metabolic changes and anti-oxidant enzyme activities of submerged rice (Oryza sativa). Funct Plant Biol. 2014;41(12):1284–94.
Article
CAS
Google Scholar
Hasanuzzaman M, Hossain M, da Silva J, Fujita M, editors. Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Crop stress and its management: perspectives and strategies. Berlin: Springer; 2012.
Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53(372):1331–41.
Article
CAS
PubMed
Google Scholar
Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 2003;91(2):179–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant phisiol. 2006;141(2):312–22.
Article
CAS
Google Scholar
Pourabdal L, Heidary R, Farboodnia T. The effects of flooding stress on induction of oxidative stress and antioxidant enzymes activity in Zea mays L. seedlings. Res J Biol Sci. 2008;3:391–4.
Google Scholar
Pucciariello C, Parlanti S, Banti V, Novi G, Perata P. Reactive oxygen species-driven transcription in arabidopsis under oxygen deprivation. Plant Physiol. 2012;159(1):184–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou X, Tan X, Hu C, Zeng L, Lu G, Fu G, Cheng Y, Zhang X. The transcriptome of Brassica napus L. roots under waterlogging at the seedling stage. In J Mol Sci. 2013;14(2):2637–51.
Article
CAS
Google Scholar
Madsen TV, Sand-Jensen K. The interactive effects of light and inorganic carbon on aquatic plant growth. Plant Cell Environ. 1994;17(8):955–62.
Article
CAS
Google Scholar
Colmer TD. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 2003;26(1):17–36.
Article
CAS
Google Scholar
Gibbs J, Greenway H. Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol. 2003;30:1–47.
Article
CAS
Google Scholar
Maberly SC, Madsen TV. Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Funct Plant Biol. 2002;29:393–405.
Article
CAS
Google Scholar
Prins HBA, Elzenga JTM. Bicarbonate utilization: function and mechanism. Aquat Bot. 1989;34:59–83.
Article
CAS
Google Scholar
Keeley JE. CAM photosynthesis in submerged aquatic plants. Bot Rev. 1998;64:121–75.
Article
Google Scholar
Keeley JE, Rundel PW. Evolution of CAM and C4 Carbon-concentrating mechanisms. Int J Plant Sci. 2003;164:S55–77.
Article
CAS
Google Scholar
Colmer TD, Winkel A, Pedersen O. A perspective on underwater photosynthesis in submerged terrestrial wetland plants. Ann Bot. 2011;62:567–88.
Google Scholar
Sand-Jensen K, Pedersen MF, Nielsen SL. Photosynthetic use of inorganic carbon among primary and secondary water plants in streams. Freshwater Biol. 1992;27:283–93.
Article
Google Scholar
Sand-Jensen K, Frost-Christensen H. Plant growth and photosynthesis in the transition zone between land and stream. Aquat Bot. 1999;63:23–35.
Article
CAS
Google Scholar
Christianson JA, Llewellyn DJ, Dennis ES, Wilson IW. Global gene expression responses to waterlogging in roots andleaves of cotton (Gossypium hirsutum L.). Plant Cell Physiol. 2010;51(1):21–37.
Article
CAS
PubMed
Google Scholar
Tadege M, Dupuis I, Kuhlemeier C. Ethanolic fermentation: new functions for an old pathway. Trends Plant Sci. 1999;4(8):320–5.
Article
CAS
PubMed
Google Scholar
Miyashita Y, Dolferus R, Ismond KP, Good AG. Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J. 2007;49(6):1108–21.
Article
CAS
PubMed
Google Scholar
De Sousa C, Sodek L. Alanine metabolism and alanine aminotransferase activity in soybean (Glycine max) during hypoxia of the root system and subsequent return to normoxia. Environ Exp Bot. 2003;50(1):1–8.
Article
Google Scholar
Rocha M, Licausi F, Araújo WL, Nunes-Nesi A, Sodek L, Fernie AR, van Dongen JT. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol. 2010;152(3):1501–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, Holdsworth MJ. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature. 2011;479(7373):415–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L. Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci. 2008;174(4):420–31.
Article
CAS
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechno. 2011;29(7):644–52.
Article
CAS
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–9.
Article
CAS
PubMed
Google Scholar
Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, et al. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003;19(5):651–2.
Article
CAS
PubMed
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Löytynoja A, Goldman N. An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci U S A. 2005;102(30):10557–62.
Article
PubMed
PubMed Central
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Bio Evol. 2000;17(4):540–52.
Article
CAS
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Bio Evol. 2007;24(8):1586–91.
Article
CAS
Google Scholar
Licausi F, Van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P. HRE1 and HRE2, two hypoxia- inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 2010;62(2):302–15.
Article
CAS
PubMed
Google Scholar
Bailey-Serres J, Fukao T, Gibbs DJ, Holdsworth MJ, Lee SC, Licausi F, van Dongen JT. Making sense of low oxygen sensing. Trends Plant Sci. 2012;17(3):129–38.
Article
CAS
PubMed
Google Scholar
Van Der Knaap E, Jagoueix S, Kende H. Expression of an ortholog of replication protein A1 (RPA1) is induced by gibberellin in deepwater rice. Proc Natl Acad Sci U S A. 1997;94(18):9979–83.
Article
PubMed
PubMed Central
Google Scholar
Fukao T, Bailey-Serres J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci U S A. 2008;105(43):16814–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong H, Li Y, Yang J, Li Y. Comparative transcriptional profiling of two rice genotypes carrying SUB1A-1 but exhibiting differential tolerance to submergence. Funct Plant Biol. 2012;39(6):449–61.
Article
CAS
Google Scholar
Striker GG, Casas C, Manzur ME, Ploschuk RA, Casal JJ. Phenomic networks reveal largely independent root and shoot adjustment in waterlogged plants of Lotus japonicus. Plant Cell Environ. 2014;37(10):2278–93.
CAS
PubMed
Google Scholar