Mitra A, Flynn KJ, Tillmann U, Raven JA, Caron D, Stoecker DK, et al. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: Incorporation of diverse mixotrophic strategies. Protist. 2016;167:106–20.
Article
CAS
PubMed
Google Scholar
Jones H. A classification of mixotrophic protists based on their behaviour. Freshw Biol. 1997;37:35–43.
Article
Google Scholar
Flynn KJ, Stoecker DK, Mitra A, Raven JA, Glibert PM, Hansen PJ, et al. Misuse of the phytoplankton–zooplankton dichotomy: The need to assign organisms as mixotrophs within plankton functional types. J Plankton Res. 2013;35:3–11.
Article
Google Scholar
Rothhaupt KO. Utilization of substitutable carbon and phosphorus sources by the mixotrophic chrysophyte Ochromonas sp. Ecology. 1996;77:706–15.
Article
Google Scholar
Simonds S, Grover JP, Chrzanowski TH. Element content of Ochromonas danica: A replicated chemostat study controlling the growth rate and temperature. FEMS Microbiol Ecol. 2010;74:346–52.
Article
CAS
PubMed
Google Scholar
Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science. 2015;347:1257594–10.
Article
PubMed
Google Scholar
Ward BA, Follows MJ. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc Natl Acad Sci. 2016;113:2958–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones RI. Mixotrophy in planktonic protists: An overview. Freshw Biol. 2000;45:219–26.
Article
Google Scholar
Stickney HL, Hood RR, Stoecker DK. The impact of mixotrophy on planktonic marine ecosystems. Ecol Model. 2000;125:203–30.
Article
CAS
Google Scholar
Caron DA, Porter KG, Sanders RW. Carbon, nitrogen, and phosphorus budgets for the mixotrophic phytoflagellate Poterioochromonas malhamensis (Chrysophceae) during bacterial ingestion. Limnol Oceanogr. 1990;35:433–43.
Article
CAS
Google Scholar
Hansen PJ, Nielsen TG. Mixotrophic feeding of Fragilidium subglobosum (Dinophyceae) on three species of Ceratium: Effects of prey concentration, prey species and light intensity. Mar Ecol Prog Ser. 1997;147:187–96.
Article
Google Scholar
Carvalho WF, Granéli E. Contribution of phagotrophy versus autotrophy to Prymnesium parvum growth under nitrogen and phosphorus sufficiency and deficiency. Harmful Algae. 2010;9:105–15.
Article
CAS
Google Scholar
Rottberger J, Gruber A, Boenigk J, Kroth PG. Influence of nutrients and light on autotrophic, mixotrophic and heterotrophic freshwater chrysophytes. Aquat Microb Ecol. 2013;71:179–91.
Article
Google Scholar
Santoferrara LF, Guida S, Zhang H, McManus GB. De novo transcriptomes of a mixotrophic and a heterotrophic ciliate from marine plankton. PLoS ONE. 2014;9:e101418.
Article
PubMed
PubMed Central
Google Scholar
Talarski A, Manning SR, La Claire JW. Transcriptome analysis of the euryhaline alga, Prymnesium parvum (Prymnesiophyceae): Effects of salinity on differential gene expression. Phycologia. 2016;55:33–44.
Article
Google Scholar
Liu Z, Campbell V, Heidelberg KB, Caron DA. Gene expression characterizes different nutritional strategies among three mixotrophic protists. FEMS Microbiol Ecol. 2016;92:fiw106.
Liu Z, Jones AC, Campbell V, Hambright KD, Heidelberg KB, Caron DA. Gene expression in the mixotrophic prymnesiophyte, Prymnesium parvum, responds to prey availability. Front Microbiol. 2015;6:319.
PubMed
PubMed Central
Google Scholar
Rokitta SD, von Dassow P, Rost B, John U. P- and N-depletion trigger similar cellular responses to promote senescence in eukaryotic phytoplankton. Front Mar Sci. 2016;3:109.
Article
Google Scholar
Segal RD, Waite AM, Hamilton DP. Transition from planktonic to benthic algal dominance along a salinity gradient. Hydrobiologia. 2006;556:119–35.
Article
Google Scholar
Elloumi J, Carrias J-F, Ayadi H, Sime-Ngando T, Bouaïn A. Communities structure of the planktonic halophiles in the solar saltern of Sfax, Tunisia. Estuar Coast Shelf Sci. 2009;81:19–26.
Article
Google Scholar
Wollmann K, Deneke R, Nixdorf B, Packroff G. Dynamics of planktonic food webs in three mining lakes across a pH gradient (pH 2–4). Hydrobiologia. 2000;433:3–14.
Article
CAS
Google Scholar
Schmidtke A, Bell EM, Weithoff G. Potential grazing impact of the mixotrophic flagellate Ochromonas sp. (Chrysophyceae) on bacteria in an extremely acidic lake. J Plankton Res. 2006;28:991–1001.
Article
CAS
Google Scholar
Posch T, Simek K, Vrba J, Pernthaler J, Nedoma J, Sattler B, et al. Predator-induced changes of bacterial size-structure and productivity studied on an experimental microbial community. Aquat Microb Ecol. 1999;18:235–46.
Article
Google Scholar
Boenigk J, Pfandl K, Stadler P, Chatzinotas A. High diversity of the “Spumella-like” flagellates: An investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol. 2005;7:685–97.
Article
CAS
PubMed
Google Scholar
Andersson A, Falk S, Samuelsson G, Hagstrom A. Nutritional characteristics of a mixotrophic nanoflagellate, Ochromonas sp. Microb Ecol. 1989;17:251–62.
Article
CAS
PubMed
Google Scholar
Sanders RW, Caron DA, Davidson JM, Dennett MR, Moran DM. Nutrient acquisition and population growth of a mixotrophic alga in axenic and bacterized cultures. Microb Ecol. 2001;42:513–23.
Article
CAS
PubMed
Google Scholar
Semple KT, Cain RB. Biodegradation of phenols by the alga Ochromonas danica. Appl Environ Microbiol. 1996;62:1265–73.
CAS
PubMed
PubMed Central
Google Scholar
Amutha K, Kokila V. PCR amplification, sequencing of 16S rRNA genes with universal primers and phylogenetic analysis of Pseudomonas aeruginosa. Int J Sci Res. 2014;3:257–61.
Welschmeyer NA. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr. 1994;39:1985–92.
Article
CAS
Google Scholar
Hu SK, Campbell V, Connell P, Gellene AG, Liu Z, Terrado R, et al. Protistan diversity and activity inferred from RNA and DNA at a coastal ocean site in the eastern North Pacific. FEMS Microbiol Ecol. 2016;92:fiw050.
Article
PubMed
Google Scholar
Loven J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, et al. Revisiting global gene expression analysis. Cell. 2012;151:476–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:1–10.
Article
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.
Article
CAS
PubMed
Google Scholar
Li W, Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
Article
CAS
PubMed
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:182–5.
Article
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
Google Scholar
Schuster G. Polyadenylation and degradation of mRNA in the chloroplast. Plant Physiol. 1999;120:937–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang JH, Tong L. Mitochondrial poly(A) polymerase and polyadenylation. BBA Gene Regul Mech. 1819;2012:992–7.
Google Scholar
Baek SH, Hong S-S, Song S-Y, Lee H-O, Nakano S, Han M-S. Grazing effects on toxic and non-toxic Microcystis aeruginosa by the mixotrophic flagellate Ochromonas sp. J Freshw Ecol. 2009;24:367–73.
Article
Google Scholar
Zubkov MV, Zöllner E, Jürgens K. Digestion of bacterial macromolecules by a mixotrophic flagellate, Ochromonas sp., compared with that by two heterotrophic flagellates, Spumella pudica and Bodo saltans. Eur J Protistol. 2001;166:155–66.
Article
Google Scholar
Pfandl K, Posch T, Boenigk J. Unexpected effects of prey dimensions and morphologies on the size selective feeding by two bacterivorous flagellates (Ochromonas sp. and Spumella sp). J Eukaryot Microbiol. 2004;51:626–33.
Article
PubMed
Google Scholar
Boenigk J, Arndt H. Particle handling during interception feeding by four species of heterotrophic nanoflagellates. J Eukaryot Microbiol. 2000;47:350–8.
Article
CAS
PubMed
Google Scholar
Boëchat IG, Weithoff G, Krüger A, Gücker B, Adrian R. A biochemical explanation for the success of mixotrophy in the flagellate Ochromonas sp. Limnol Oceanogr. 2007;52:1624–32.
Article
Google Scholar
Holen DA. Effects of prey abundance and light intensity on the mixotrophic chrysophyte Poterioochromonas malhamensis from a mesotrophic lake. Freshw Biol. 1999;42:445–55.
Article
Google Scholar
Keller MD, Shapiro LP, Haugen EM, Cucci TL, Sherr EB, Sherr BF. Phagotrophy of fluorescently labeled bacteria by an oceanic phytoplankter. Microb Ecol. 1994;28:39–52.
Article
CAS
PubMed
Google Scholar
Ptacnik R, Gomes A, Royer S-J, Berger SA, Calbet A, Nejstgaard JC, et al. A light-induced shortcut in the planktonic microbial loop. Sci Rep. 2016;6:29286.
Article
PubMed
PubMed Central
Google Scholar
Terrado R, Pasulka A, Lie AAY, Orphan VJ, Heidelberg KB, Caron DA, et al. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte. ISME J. in review.
Sanders RW, Porter KG, Caron DA. Relationship between phototrophy and phagotrophy in the mixotrophic chrysophyte Poterioochromonas malhamensis. Microb Ecol. 1990;19:97–109.
Article
CAS
PubMed
Google Scholar
Jones RI. Mixotrophy in planktonic protists as a spectrum of nutritional strategies. Mar Microb Food Webs. 1994;8:87–96.
Google Scholar
Pfannschmidt T, Yang C. The hidden function of photosynthesis: A sensing system for environmental conditions that regulates plant acclimation responses. Protoplasma. 2012;249:125–36.
Article
CAS
Google Scholar
Bohdanowicz M, Grinstein S. Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiol Rev. 2013;93:69–106.
Article
CAS
PubMed
Google Scholar
Flannagan RS, Jaumouillé V, Grinstein S. The cell biology of phagocytosis. Annu Rev Pathol Mech Dis. 2012;7:61–98.
Article
CAS
Google Scholar
Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: A control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013;14:283–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J. Evolution by gene duplication: An update. Trends Ecol Evol. 2003;18:292–8.
Article
Google Scholar
Fenchel T. Ecology of heterotrophic microflagellates. III. Adaptations to heterogeneous environments. Mar Ecol Prog Ser. 1982;9:25–33.
Article
Google Scholar
Eskelinen E-L, Saftig P. Autophagy: A lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta BBA Mol Cell Res. 1793;2009:664–73.
Google Scholar
Stoltze HJ, Lui NST, Anderson OR, Roels OA. The influence of the mode of nutrition on the digestive system of Ochromonas malhamensis. J Cell Biol. 1969;43:396–409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schuster FL, Hershenov B, Aaronson S. Ultrastructural observations on aging of stationary cultures and feeding in Ochromonas. J Protozool. 1968;15:335–46.
Article
CAS
PubMed
Google Scholar
Goldman JC, Caron DA. Experimental studies on an omnivorous microflagellate: Implications for grazing and nutrient regeneration in the marine microbial food chain. Deep Sea Res. 1985;32:899–915.
Article
Google Scholar
Henrissat B, Callebautt I, Fabrega S, Lehn P, Mornont J, Davies G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci U S A. 1995;92:7090–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiristi M, Singh VV, de Avila B, Uygun M, Soto F, Uygun DA, et al. Lysozyme-based antibacterial nanomotors. Am Chem Soc Nano. 2015;9:9252–9.
CAS
Google Scholar
Tan Z, Zhu X, Chen J, Li Q, Zhang X. Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production. Appl Environ Microbiol. 2013;79:4838–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krebs A, Bridger WA. The kinetic properties of phosphoenolpyruvate carboxykinase of Escherichia coli. Can J Biochem. 1980;58:309–18.
Article
CAS
PubMed
Google Scholar
Yang J, Kalhan SC, Hanson RW. What is the metabolic role of phosphoenolpyruvate carboxykinase. J Biol Chem. 2010;284:27025–9.
Article
Google Scholar
Cousins AB, Baroli I, Badger MR, Ivakov A, Lea PJ, Leegood RC, et al. The role of phosphoenol pyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. Plant Physiol. 2007;145:1006–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneidereit J, Häusler RE, Fiene G, Kaiser WM, Weber APM. Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism. Plant J Cell Mol Biol. 2006;45:206–24.
Article
CAS
Google Scholar
Lancien M. Enzyme redundancy and the importance of 2-oxoglutarate in higher plant ammonium assimilation. Plant Physiol. 2000;123:817–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rothhaupt KO. Nutrient turnover by freshwater bacterivorous flagellates: differences between a heterotrophic and a mixotrophic chrysophyte. Aquat Microb Ecol. 1997;12:65–70.
Article
Google Scholar
Takahashi F, Yamagata D, Ishikawa M, Yosuke F, Ogura Y, Kasahara M, et al. Aureochrome, a photoreceptor required for photomorphogenesis in stramenopiles. Proc Natl Acad Sci U S A. 2007;104:19625–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi F. Blue-light-regulated transcription factor, aureochrome, in photosynthetic stramenopiles. J Plant Res. 2016;129:189–97.
Article
CAS
PubMed
Google Scholar
Rothhaupt KO. Laboratorary experiments with a mixotrophic chrysophyte and obligately phagotrophic and phototrophic competitors. Ecology. 1996;77:716–24.
Article
Google Scholar
Raven JA. Comparative aspects of chrysophyte nutrition with emphasis on carbon, phosphorus and nitrogen. In: Sandgren CD, Smol JP, Kristiansen J, editors. Chrysophyte Algae Ecol. Phylogeny Dev. Cambridge: Cambridge University Press; 1995. p. 95–118.
Chapter
Google Scholar
Raven JA. Phagotrophy in phototrophs. Limnol Oceanogr. 1997;42:198–205.
Article
CAS
Google Scholar
Figueroa-martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. When the lights go out: The evolutionary fate of free-living colorless green algae. New Phytol. 2015;206:972–82.
Article
PubMed
PubMed Central
Google Scholar
Bell G. Experimental evolution of heterotrophy in a green alga. Evolution. 2012;67:468–76.
Article
PubMed
Google Scholar
de Castro F, Gaedke U, Boenigk J. Reverse evolution: Driving forces behind the loss of acquired photosynthetic traits. PLoS ONE. 2009;4:e8465.
Article
PubMed
PubMed Central
Google Scholar
Tanaka R, Tanaka A. Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol. 2007;58:321–46.
Article
CAS
PubMed
Google Scholar
Jensen PE, Leister D. Chloroplast evolution, structure and functions. F1000Prime Rep. 2014;14:40.
Google Scholar
Barbrook AC, Howe CJ, Purton S. Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci. 2006;11:101–8.
Article
CAS
PubMed
Google Scholar
Keeling PJ. The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc B Biol Sci. 2010;365:729–48.
Article
CAS
Google Scholar