Adams ME, Olivera BM. Neurotoxins: overview of an emerging research technology. Trends Neurosci. 1994;17:151–5.
Article
CAS
PubMed
Google Scholar
Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov. 2003;2:790–802.
Article
CAS
PubMed
Google Scholar
Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28:219–29.
Article
PubMed
Google Scholar
Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature. 2008;453:175–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao Z, Yu Y, Wu Y, Hao P, Di Z, He Y, et al. The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nat Commun. 2013;4:2602.
PubMed
PubMed Central
Google Scholar
Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJR, et al. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci. 2013;110:20651–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanggaard KW, Bechsgaard JS, Fang X, Duan J, Dyrlund TF, Gupta V, et al. Spider genomes provide insight into composition and evolution of venom and silk. Nat Commun. 2014;5:3765.
CAS
PubMed
PubMed Central
Google Scholar
i5K Consortium. The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. J Hered. 2013;104:595–600.
Article
PubMed Central
Google Scholar
Hilbrant M, Damen WGM, McGregor AP. Evolutionary crossroads in developmental biology: the spider Parasteatoda tepidariorum. Dev Camb Engl. 2012;139:2655–62.
CAS
Google Scholar
Isbister GK, Gray MR. Effects of envenoming by comb-footed spiders of the genera Steatoda and Achaearanea (family Theridiidae: Araneae) in Australia. J Toxicol Clin Toxicol. 2003;41:809–19.
Article
PubMed
Google Scholar
Garb JE, González A, Gillespie RG. The black widow spider genus Latrodectus (Araneae: Theridiidae): phylogeny, biogeography, and invasion history. Mol Phylogenet Evol. 2004;31:1127–42.
Article
PubMed
Google Scholar
Vetter RS, Isbister GK. Medical aspects of spider bites. Annu Rev Entomol. 2008;53:409–29.
Article
CAS
PubMed
Google Scholar
Kiyatkin NI, Dulubova IE, Chekhovskaya IA, Grishin EV. Cloning and structure of cDNA encoding α-Latrotoxin from black widow spider venom. FEBS Lett. 1990;270:127–31.
Article
CAS
PubMed
Google Scholar
Ushkaryov YA, Volynski KE, Ashton AC. The multiple actions of black widow spider toxins and their selective use in neurosecretion studies. Toxicon. 2004;43:527–42.
Article
CAS
PubMed
Google Scholar
Südhof TC. alpha-Latrotoxin and its receptors: neurexins and CIRL/latrophilins. Annu Rev Neurosci. 2001;24:933–62.
Article
PubMed
Google Scholar
Fritz LC, Tzen MC, Mauro A. Different components of black widow spider venom mediate transmitter release at vertebrate and lobster neuromuscular junctions. Nature. 1980;283:486–7.
Article
CAS
PubMed
Google Scholar
Volynski KE, Nosyreva ED, Ushkaryov YA, Grishin EV. Functional expression of alpha-Latrotoxin in baculovirus system. FEBS Lett. 1999;442:25–8.
Article
CAS
PubMed
Google Scholar
Magazanik LG, Fedorova IM, Kovalevskaya GI, Pashkov VN, Bulgakov OV, Grishin EV. Selective presynaptic insectotoxin (alpha-Latroinsectotoxin) isolated from black widow spider venom. Neuroscience. 1992;46:181–8.
Article
CAS
PubMed
Google Scholar
Dulubova IE, Krasnoperov VG, Khvotchev MV, Pluzhnikov KA, Volkova TM, Grishin EV, et al. Cloning and structure of delta-Latroinsectotoxin, a novel insect-specific member of the latrotoxin family: functional expression requires C-terminal truncation. J Biol Chem. 1996;271:7535–43.
Article
CAS
PubMed
Google Scholar
Elrick DB, Charlton MP. alpha-Latrocrustotoxin increases neurotransmitter release by activating a calcium influx pathway at crayfish neuromuscular junction. J Neurophysiol. 1999;82:3550–62.
CAS
PubMed
Google Scholar
He Q, Duan Z, Yu Y, Liu Z, Liu Z, Liang S. The venom gland transcriptome of Latrodectus tredecimguttatus revealed by deep sequencing and cDNA library analysis. PLoS ONE. 2013;8:e81357.
Article
PubMed
PubMed Central
Google Scholar
Haney RA, Ayoub NA, Clarke TH, Hayashi CY, Garb JE. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genomics. 2014;15:366.
Article
PubMed
PubMed Central
Google Scholar
Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L. Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct. 2012;7:18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grishin EV, Himmelreich NH, Pluzhnikov KA, Pozdnyakova NG, Storchak LG, Volkova TM, et al. Modulation of functional activities of the neurotoxin from black widow spider venom. FEBS Lett. 1993;336:205–7.
Article
CAS
PubMed
Google Scholar
Gasparini S, Kiyatkin N, Drevet P, Boulain JC, Tacnet F, Ripoche P, et al. The low molecular weight protein which co-purifies with alpha-Latrotoxin is structurally related to crustacean hyperglycemic hormones. J Biol Chem. 1994;269:19803–9.
CAS
PubMed
Google Scholar
Kiyatkin NI, Kulikovskaya IM, Grishin EV, Beadle DJ, King LA. Functional characterization of black widow spider neurotoxins synthesized in insect cells. Eur J Biochem FEBS. 1995;230:854–9.
Article
CAS
Google Scholar
Volkova TM, Pluzhnikov KA, Woll PG, Grishin EV. Low molecular weight components from black widow spider venom. Toxicon. 1995;33:483–9.
Article
CAS
PubMed
Google Scholar
Grishin EV. Black widow spider toxins: the present and the future. Toxicon. 1998;36:1693–701.
Article
CAS
PubMed
Google Scholar
McCowan C, Garb JE. Recruitment and diversification of an ecdysozoan family of neuropeptide hormones for black widow spider venom expression. Gene. 2014;536:366–75.
Article
CAS
PubMed
Google Scholar
Undheim EAB, Grimm LL, Low C-F, Morgenstern D, Herzig V, Zobel-Thropp P, et al. Weaponization of a hormone: convergent recruitment of hyperglycemic hormone into the venom of arthropod predators. Structure. 2015;23:1283–92.
Article
CAS
PubMed
Google Scholar
Young EF, Martin DW, Geren CR. Neurotoxic action of the venom of the common American house spider. Physiol Zool. 1984;57:521–9.
Article
CAS
Google Scholar
Mediannikov O, Sekeyová Z, Birg M-L, Raoult D. A novel obligate intracellular gamma-proteobacterium associated with ixodid ticks, Diplorickettsia massiliensis, Gen. Nov., Sp. Nov. PLoS One. 2010;5:e11478.
Article
PubMed
PubMed Central
Google Scholar
Wattam AR, Gabbard JL, Shukla M, Sobral BW. Comparative genomic analysis at the PATRIC, a bioinformatic resource center. Methods Mol Biol Clifton NJ. 2014;1197:287–308.
Article
Google Scholar
Liu J, May-Collado LJ, Pekár S, Agnarsson I. A revised and dated phylogeny of cobweb spiders (Araneae, Araneoidea, Theridiidae): a predatory Cretaceous lineage diversifying in the era of the ants (Hymenoptera, Formicidae). Mol Phylogenet Evol. 2016;94:658–75.
Article
PubMed
Google Scholar
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:W609–612.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaston BJ. Comparative biology of American black widow spiders. Trans San Diego Soc Nat Hist. 1970;16:33–82.
Google Scholar
Ubick D, Paquin P, Cushing PE, Roth V, editors. Spiders of North America: an identification manual. American Arachnological Society; 2005.
Levi HW. Cosmopolitan and pantropical species of theridiid spiders (Araneae: Theridiidae). Pac Insects. 1967;9:175–86.
Google Scholar
Levi HW, Randolph DE. A key and checklist of American spiders of the family Theridiidae north of Mexico (Araneae). J Arachnol. 1975;3:31–51.
Google Scholar
Tanaka K. Seasonal food supply for the house spider, Achaearanea tepidariorum (Araneae, Theridiidae) in northern Japan. Jpn J Entomol. 1989;57:843–52.
Google Scholar
McCormick S, Polis GA. Arthropods that prey on vertebrates. Biol Rev. 1982;57:29–58.
Article
Google Scholar
Hódar JA, Sánchez-Piñero F. Feeding habits of the black widow spider Latrodectus lilianae (Araneae: Theridiidae) in an arid zone of south-east Spain. J Zool. 2002;257:101–9.
Article
Google Scholar
Brandley N, Johnson M, Johnsen S. Aposematic signals in North American black widows are more conspicuous to predators than to prey. Behav Ecol. 2016;27:1104–12.
Article
Google Scholar
Garb JE, Hayashi CY. Molecular evolution of alpha-Latrotoxin, the exceptionally potent vertebrate neurotoxin in black widow spider venom. Mol Biol Evol. 2013;30:999–1014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bordenstein SR, Bordenstein SR. Eukaryotic association module in phage WO genomes from Wolbachia. Nat Commun. 2016;7:13155.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orlova EV, Rahman MA, Gowen B, Volynski KE, Ashton AC, Manser C, et al. Structure of alpha-Latrotoxin oligomers reveals that divalent cation-dependent tetramers form membrane pores. Nat Struct Biol. 2000;7:48–53.
Article
CAS
PubMed
Google Scholar
De Oliveira Cristina K, De Andrade Gonçalves RM, Giusti AL, Da Silva Dias W, Tambourgi DV. Sex-linked variation of Loxosceles intermedia spider venoms. Toxicon. 1999;37:217–21.
Article
Google Scholar
Rash LD, King RG, Hodgson WC. Sex differences in the pharmacological activity of venom from the white-tailed spider (Lampona cylindrata). Toxicon. 2000;38:1111–27.
Article
CAS
PubMed
Google Scholar
Binford GJ. An analysis of geographic and intersexual chemical variation in venoms of the spider Tegenaria agrestis (Agelenidae). Toxicon. 2001;39:955–68.
Article
CAS
PubMed
Google Scholar
Menezes MC, Furtado MF, Travaglia-Cardoso SR, Camargo ACM, Serrano SMT. Sex-based individual variation of snake venom proteome among eighteen Bothrops jararaca siblings. Toxicon. 2006;47:304–12.
Article
CAS
PubMed
Google Scholar
Borst P, Greaves DR. Programmed gene rearrangements altering gene expression. Science. 1987;235:658–67.
Article
CAS
PubMed
Google Scholar
Korneev S, O’Shea M. Evolution of nitric oxide synthase regulatory genes by DNA inversion. Mol Biol Evol. 2002;19:1228–33.
Article
CAS
PubMed
Google Scholar
Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA, King GF, et al. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009;10:483–511.
Article
CAS
PubMed
Google Scholar
Casewell NR, Wagstaff SC, Harrison RA, Renjifo C, Wuster W. Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Mol Biol Evol. 2011;28:2637–49.
Article
CAS
PubMed
Google Scholar
Johnson JH, Bloomquist JR, Krapcho KJ, Kral RM, Trovato R, Eppler KG, et al. Novel insecticidal peptides from Tegenaria agrestis spider venom may have a direct effect on the insect central nervous system. Arch Insect Biochem Physiol. 1998;38:19–31.
Article
CAS
PubMed
Google Scholar
Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008;24:637–44.
Article
CAS
PubMed
Google Scholar
Posnien N, Zeng V, Schwager EE, Pechmann M, Hilbrant M, Keefe JD, et al. A comprehensive reference transcriptome resource for the common house spider Parasteatoda tepidariorum. PLoS ONE. 2014;9:e104885.
Article
PubMed
PubMed Central
Google Scholar
Garb JE, Hayashi CY. Modular evolution of egg case silk genes across orb-weaving spider superfamilies. Proc Natl Acad Sci. 2005;102:11379–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics. 2010;26:493–500.
Article
PubMed
Google Scholar
Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16:276–7.
Article
CAS
PubMed
Google Scholar
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33:W116–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gough J, Chothia C. SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res. 2002;30:268–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, et al. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 2013;41:W597–600.
Article
PubMed
PubMed Central
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.
Article
PubMed
PubMed Central
Google Scholar