Harlan JR, De Wet JMJ. On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev. 1975;41(4):361–90.
Article
Google Scholar
De Storme N, Geelen D. Sexual polyploidization in plants – cytological mechanisms and molecular regulation. New Phytol. 2013;198(3):670–84.
Article
PubMed
PubMed Central
Google Scholar
Hao M, Luo J, Zeng D, Zhang L, Ning S, Yuan Z, et al. QTug. sau-3B is a major quantitative trait locus for wheat hexaploidization. G3 Genes Genomes. Genetics. 2014;4(10):1943–53.
CAS
Google Scholar
Song K, Lu P, Tang K, Osborn TC. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci U S A. 1995;92(17):7719–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ozkan H, Levy AA, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell. 2001;13(8):1735–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaeta RT, Piresa JC, Iniguez-Luy F, Leon E, Osborn TC. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell. 2007;19(11):3403–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buggs RJ, Chamala S, Wu W, Tate JA, Schnable PS, Soltis DE, et al. Rapid, repeated, and clustered loss of duplicate genes in allopolyploid plant populations of independent origin. Curr Biol. 2012;22(3):248–52.
Article
CAS
PubMed
Google Scholar
Chester M, Gallagher JP, Symonds VV, da Silva AV C, Mavrodiev EV, Leitch AR, et al. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci U S A. 2012;109(4):1176–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
McClintock B. The significance of responses of the genome to challenge. Science. 1984;226(4676):792–801.
Article
CAS
PubMed
Google Scholar
Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, et al. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 2003;19(3):141–7.
Article
CAS
PubMed
Google Scholar
Buggs RJ, Zhang A, Miles LN, Tate JA, Gao L, Wei W, et al. Transcriptomic shock generates evolutionary novelty in a newly formed, natural allopolyploid plant. Curr Biol. 2011;21:551–6.
Article
CAS
PubMed
Google Scholar
Hegarty M. Hybridization: expressing yourself in a crowd. Curr Biol. 2011;21(7):R254–5.
Article
CAS
PubMed
Google Scholar
Chen ZJ. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol. 2007;58:377–406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, et al. Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet. 2008;42:443–61.
Article
CAS
PubMed
Google Scholar
Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, et al. Phenotypic instability and rapid gene silencing in newly formed arabidopsis allotetraploids. Plant Cell. 2000;12(9):1551–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams KL, Wendel JF. Allele-specific, bidirectional silencing of an alcohol dehydrogenase gene in different organs of interspecific diploid cotton hybrids. Genetics. 2005;171(4):2139–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Tian L, Lee HS, Wei NE, Jiang H, Watson B, et al. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics. 2006;172(1):507–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chelaifa H, Monnier A, Ainouche M. Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina x townsendii and Spartina anglica (Poaceae). New Phytol. 2010;186:161–74.
Article
CAS
PubMed
Google Scholar
Flagel LE, Wendel JF. Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol. 2010;186:184–93.
Article
CAS
PubMed
Google Scholar
Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ. Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Curr Biol. 2006;16(16):1652–9.
Article
CAS
PubMed
Google Scholar
Hegarty MJ, Barker GL, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ. Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Philos T R Soc B. 2008;363(1506):3055–69.
Article
CAS
Google Scholar
Xu C, Bai Y, Lin X, Zhao N, Hu L, Gong Z, et al. Genome-wide disruption of gene expression in allopolyploids but not hybrids of rice subspecies. Mol Biol Evol. 2014;31(5):1066–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kihara H. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare (abstr) (in Japanese). Agric Hortic. 1944;19:889–90.
Google Scholar
McFadden ES, Sears ER. The artificial synthesis of Triticum spelta. Rec Genet Soc Amer. 1944;13:26–7.
Google Scholar
Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, et al. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci U S A. 2002;99(12):8133–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chelaifa H, Chagué V, Chalabi S, Mestiri I, Arnaud D, Deffains D, et al. Prevalence of gene expression additivity in genetically stable wheat allohexaploids. New Phytol. 2013;197(3):730–6.
Article
CAS
PubMed
Google Scholar
Li AL, Geng SF, Zhang LQ, Liu DC, Mao L. Making the bread: insights from newly synthesized allohexaploid wheat. Mol Plant. 2015;8(6):847–59.
Article
CAS
PubMed
Google Scholar
Yoo MJ, Szadkowski E, Wendel JF. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity. 2013;110(2):171–80.
Article
CAS
PubMed
Google Scholar
Li A, Liu D, Liu D, Wu J, Zhao X, Hao M, et al. mRNA and Small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell. 2014;26(5):1878–900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, et al. Aegilops tauschii draft genome sequence reveals gene repertoire for wheat adaptation. Nature. 2013;496:91–5.
Article
CAS
PubMed
Google Scholar
Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013;496(7443):87–90.
Article
CAS
PubMed
Google Scholar
The International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788.
Article
Google Scholar
Pfeifer M, Kugler KG, Sandve SR, Zhan B, Rudi H, Hvidsten TR, et al. Genome interplay in the grain transcriptome of hexaploid bread wheat. Science. 2014;345(6194):1250091.
Article
PubMed
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq–A Python framework to work with high-throughput sequencing data. Bioinformatics. 2014;31:166–9.
Article
PubMed
PubMed Central
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.
Article
CAS
PubMed
Google Scholar
Yang W, Liu D, Li J, Zhang L, Wei H, Hu X, et al. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics. 2009;36(9):539–46.
Article
CAS
PubMed
Google Scholar
Shen H, He H, Li J, Chen W, Wang X, Guo L, et al. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell. 2012;24(3):875–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paschold A, Jia Y, Marcon C, Lund S, Larson NB, Yeh CT, et al. Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents. Genome Res. 2012;22(12):2445–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paschold A, Larson NB, Marcon C, Schnable JC, Yeh C-T, Lanz C, et al. Nonsyntenic genes drive highly dynamic complementation of gene expression in maize hybrids. Plant Cell. 2014;26(10):3939–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feldman M, Levy AA, Fahima T, Korol A. Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot. 2012;63(14):5045–59.
Article
CAS
PubMed
Google Scholar
Chen ZJ. Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet. 2013;14(7):471–82.
Article
CAS
PubMed
Google Scholar
Jones DF. Dominance of linked factors as a means of accounting for heterosis. Genetics. 1917;2:466–79.
CAS
PubMed
PubMed Central
Google Scholar
Luo J, Hao M, Zhang L, Chen J, Zhang L, Yuan Z, et al. Microsatellite mutation rate during allohexaploidization of newly resynthesized wheat. Int J Mol Sci. 2012;13(10):12533–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Large EC. Growth stages of cereals: illustration of the feekes scale. Plant Pathol. 1954;3:128–9.
Article
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 2013;29(8):1035–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278(5338):631–7.
Article
CAS
PubMed
Google Scholar
Kawahara Y, Bastide MDL, Hamilton JP, Kanamori H, Mccombie WR, Ouyang S, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice. 2013;6(1):251–5.
Article
Google Scholar
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38 suppl 2:W64–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, et al. Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol. 2008;146(4):1738–58.
Article
CAS
PubMed
PubMed Central
Google Scholar