Torija MJ, Rozés N, Poblet M, Guillamón JM, Mas A. Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. Int J Food Microbiol. 2003;80:47–53.
Article
CAS
PubMed
Google Scholar
Beltran G, Torija MJ, Novo M, Ferrer NN, Poblet M, Guillamón JM, et al. Analysis of yeast populations during alcoholic fermentation: a six year follow-up study. Syst Appl Microbiol. 2002;25:287–93.
Article
CAS
PubMed
Google Scholar
Salvadó Z, Arroyo-López FN, Guillamón JM, Salazar G, Querol A, Barrio E, et al. Temperature adaptation Markedly Determines evolution within the genus Saccharomyces. Appl Environ Microbiol. 2011;77:2292–302.
Article
PubMed
PubMed Central
Google Scholar
Bisson LF. Stuck and sluggish fermentations. Am J Enol Vitic. 1999;50:107–19.
CAS
Google Scholar
Infante JJ, Dombek KM, Rebordinos L, Cantoral JM, Young ET. Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast. Genetics. 2003;165:1745–59.
CAS
PubMed
PubMed Central
Google Scholar
Marullo P, Bely M, Masneuf-Pomarede I, Aigle M, Dubourdieu D. Inheritable nature of enological quantitative traits is demonstrated by meiotic segregation of industrial wine yeast strains. FEMS Yeast Res. 2004;4:711–9.
Article
CAS
PubMed
Google Scholar
Mackay TFC, Stone EA, Ayroles JF. The genetics of quantitative traits: challenges and prospects. Nat Rev Genet. 2009;10:565–77.
Article
CAS
PubMed
Google Scholar
Parts L. Genome-wide mapping of cellular traits using yeast. Yeast. 2014;31:197–205.
Article
CAS
PubMed
Google Scholar
Yang Y, Foulquié-Moreno MR, Clement L, Erdei É, Tanghe A, Schaerlaekens K, et al. QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing. PLoS Genet. 2013;9:e1003693.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinha H, David L, Pascon RC, Clauder-Münster S, Krishnakumar S, Nguyen M, et al. Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics. 2008;180:1661–70.
Article
PubMed
PubMed Central
Google Scholar
Shapira R, David L. Genes with a combination of over-dominant and epistatic effects underlie heterosis in growth of Saccharomyces cerevisiae at high temperature. Front Genet. 2016;7:72.
Article
PubMed
PubMed Central
Google Scholar
Ben-Ari G, Zenvirth D, Sherman A, David L, Klutstein M, Lavi U, et al. Four linked genes participate in controlling sporulation efficiency in budding yeast. PLoS Genet. 2006;2:1815–23.
Article
CAS
Google Scholar
Deutschbauer AM, Davis RW. Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat Genet. 2005;37:1333–40.
Article
CAS
PubMed
Google Scholar
Ehrenreich IM, Gerke JP, Kruglyak L. Genetic dissection of complex traits in yeast: Insights from studies of gene expression and other phenotypes in the BYxRM cross. Cold Spring Harb Symp Quant Biol. 2009;74:145–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katou T, Namise M, Kitagaki H, Akao T, Shimoi H. QTL mapping of sake brewing characteristics of yeast. J Biosci Bioeng. 2009;107:383–93.
Article
CAS
PubMed
Google Scholar
Nogami S, Ohya Y, Yvert G. Genetic complexity and quantitative trait loci mapping of yeast morphological traits. PLoS Genet. 2007;3:0305–18.
Article
CAS
Google Scholar
Kim HS, Fay JC. Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds. Proc Natl Acad Sci U S A. 2007;104:19387–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voordeckers K, Kominek J, Das A, Espinosa-Cantú A, De Maeyer D, Arslan A, et al. Adaptation to high ethanol reveals complex evolutionary pathways. PLoS Genet. 2015;11:e1005635.
Article
PubMed
PubMed Central
Google Scholar
Greetham D, Wimalasena TT, Leung K, Marvin ME, Chandelia Y, Hart AJ, et al. The genetic basis of variation in clean lineages of Saccharomyces cerevisiae in response to stresses encountered during bioethanol fermentations. PLoS One. 2014;9:e103233.
Article
PubMed
PubMed Central
Google Scholar
Albert FW, Treusch S, Shockley AH, Bloom JS, Kruglyak L. Genetics of single-cell protein abundance variation in large yeast populations. Nature. 2014;506:1–19.
Article
Google Scholar
Parts L, Liu Y-C, Tekkedil MM, Steinmetz LM, Caudy AA, Fraser AG, et al. Heritability and genetic basis of protein level variation in an outbred population. Genome Res. 2014;24:1363–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brauer MJ, Christianson CM, Pai DA, Dunham MJ. Mapping novel traits by array-assisted bulk segregant analysis in Saccharomyces cerevisiae. Genetics. 2006;173:1813–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Wang L, Wu X, Fang O, Wang L, Lu C, et al. Polygenic molecular architecture underlying non-sexual cell aggregation in budding yeast. DNA Res. 2013;20:55–66.
Article
PubMed
PubMed Central
Google Scholar
Marullo P, Bely M, Masneuf-Pomarède I, Pons M, Aigle M, Dubourdieu D. Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model. FEMS Yeast Res. 2006;6:268–79.
Article
CAS
PubMed
Google Scholar
Ambroset C, Petit M, Brion C, Sanchez I, Delobel P, Guérin C, et al. Deciphering the molecular basis of wine yeast fermentation traits using a combined genetic and genomic approach. G3Genes|Genomes|Genetics. 2011;1:263–81.
Salinas F, Cubillos FA, Soto D, Garcia V, Bergström A, Warringer J, et al. The genetic basis of natural variation in oenological traits in Saccharomyces cerevisiae. PLoS One. 2012;7:e49640.
Article
CAS
PubMed
PubMed Central
Google Scholar
García-Ríos E, López-Malo M, Guillamón JM. Global phenotypic and genomic comparison of two Saccharomyces cerevisiae wine strains reveals a novel role of the sulfur assimilation pathway in adaptation at low temperature fermentations. BMC Genomics. 2014;15:1059.
Article
PubMed
PubMed Central
Google Scholar
Liti G, Haricharan S, Cubillos FA, Tierney AL, Sharp S, Bertuch AA, et al. Segregating YKU80 and TLC1 alleles underlying natural variation in telomere properties in wild yeast. PLoS Genet. 2009;5:e1000659.
Article
PubMed
PubMed Central
Google Scholar
Ramazzotti M, Berná L, Stefanini I, Cavalieri D. A computational pipeline to discover highly phylogenetically informative genes in sequenced genomes: application to Saccharomyces cerevisiae natural strains. Nucleic Acids Res. 2012;40:3834–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, et al. Population genomics of domestic and wild yeasts. Nature. 2009;458:337–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergström A, Simpson JT, Salinas F, Barré B, Parts L, Zia A, et al. A high-definition view of functional genetic variation from natural yeast genomes. Mol Biol Evol. 2014;31:872–88.
Article
PubMed
PubMed Central
Google Scholar
Liti G, Louis EJ. Advances in quantitative trait analysis in yeast. PLoS Genet. 2012;8:e1002912.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naithani S, Saracco SA, Butler CA, Fox TD. Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol Biol Cell. 2003;14:324–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashbysb MN, Kutsunais SY, Ackermany S, Tzagoloffll A, Edwards PA. COQ2 is a candidate for the structural gene encoding puru-hydroxybenzoate: polyprenyltransferase. J Biol Chem. 1992;267:4128–36.
Google Scholar
Kim HS, Huh J, Riles L, Reyes A, Fay JC. A noncomplementation screen for quantitative trait alleles in Saccharomyces cerevisiae. G3 (Bethesda). 2012;2:753–60.
Article
Google Scholar
Lendenmann MH, Croll D, Palma-Guerrero J, Stewart EL, McDonald BA. QTL mapping of temperature sensitivity reveals candidate genes for thermal adaptation and growth morphology in the plant pathogenic fungus Zymoseptoria tritici. Heredity (Edinb). 2016;116:384–94.
Article
CAS
Google Scholar
Parts L, Cubillos FA, Warringer J, Jain K, Salinas F, Bumpstead SJ, et al. Revealing the genetic structure of a trait by sequencing a population under selection. Genome Res. 2011;21:1131–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, et al. Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature. 2010;15:1030–42.
Google Scholar
Cubillos FA, Billi E, Zörgö E, Parts L, Fargier P, Omholt S, et al. Assessing the complex architecture of polygenic traits in diverged yeast populations. Mol Ecol. 2011;20:1401–13.
Article
PubMed
Google Scholar
Ames RM, Rash BM, Hentges KE, Robertson DL, Delneri D, Lovell SC. Gene duplication and environmental adaptation within yeast populations. Genome Biol Evol. 2010;2:591–601.
Article
PubMed
PubMed Central
Google Scholar
Brown CA, Murray AW, Verstrepen KJ. Rapid expansion and functional divergence of subtelomeric gene families in yeasts. Curr Biol. 2010;20:895–903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grant CM, MacIver FH, Dawes IW. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Lett. 1997;29:511–5.
Google Scholar
García-Ríos E, Ramos-Alonso L, Guillamón JM. Correlation between low temperature adaptation and oxidative stress in Saccharomyces cerevisiae. Front Microbiol. 2016;7:1–11.
Article
Google Scholar
Beltran G, Novo M, Leberre V, Sokol S, Labourdette D, Guillamón JM, et al. Integration of transcriptomic and metabolic analyses for understanding the global responses of low-temperature winemaking fermentations. FEMS Yeast Res. 2006;6:1167–83.
Article
CAS
PubMed
Google Scholar
Redón M, Guillamón JM, Mas A, Rozés N. Effect of growth temperature on yeast lipid composition and alcoholic fermentation at low temperature. Eur Food Res Technol. 2011;232:517–27.
Article
Google Scholar
Tronchoni J, Rozès N, Querol A, Guillamón JM. Lipid composition of wine strains of Saccharomyces kudriavzevii and Saccharomyces cerevisiae grown at low temperature. Int J Food Microbiol. 2012;155:191–8.
Article
CAS
PubMed
Google Scholar
Henderson CM, Lozada-Contreras M, Jiranek V, Longo ML, Block DE. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains. Appl Environ Microbiol. 2013;79:91–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dawes IW, Hardie ID. Selective killing of vegetative cells in sporulated yeast cultures by exposure to diethyl ether. Mol Gen Genet. 1974;131:281–9.
Article
CAS
PubMed
Google Scholar
Riou C, Nicaud JM, Barre P, Gaillardin C. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation. Yeast. 1997;13:903–15.
Article
CAS
PubMed
Google Scholar
Zwietering MH, Jongenburger I, Rombouts FM, Van K. Modeling of the bacterial growth curve modeling of the bacterial growth curve. Appl Environ Microbiol. 1990;56:1875–81.
CAS
PubMed
PubMed Central
Google Scholar
Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol. 2014;1151:165–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie C, Tammi MT. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics. 2009;10:80.
Article
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH, et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature. 2002;416:326–30.
Article
CAS
PubMed
Google Scholar
Upshall A, Giddings B, Mortimore ID. The use of benlate for distinguishing between haploid and diploid strains of Aspergillus nidulans and Aspergillus terreus. J Gen Microbiol. 1977;100:413–8.
Article
Google Scholar
Stearns T, Hoyt MA, Botstein D. Yeast mutants sensitive to antimicrotubule drugs define three genes that affect microtubule function. Genetics. 1990;124:251–62.
CAS
PubMed
PubMed Central
Google Scholar
Huxley C, Green ED, Dunham I. Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet. 1990;6:236.
Article
CAS
PubMed
Google Scholar
Brem RB, Kruglyak L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci U S A. 2005;102:1572–7.
Article
CAS
PubMed
PubMed Central
Google Scholar