Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325(5942):834–40.
Article
CAS
PubMed
Google Scholar
Weinert BT, Wagner SA, Horn H, Henriksen P, Liu WR, Olsen JV, et al. Proteome-wide mapping of the drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal. 2011;4(183):ra48.
Article
CAS
PubMed
Google Scholar
Henriksen P, Wagner SA, Weinert BT, Sharma S, Bacinskaja G, Rehman M, et al. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics. 2012;11(11):1510–22.
Article
PubMed
PubMed Central
Google Scholar
Finkemeier I, Laxa M, Miguet L, Howden AJ, Sweetlove LJ. Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol. 2011;155(4):1779–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Oh MH, Schwarz EM, Larue CT, Sivaguru M, Imai BS, et al. Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis. Plant Physiol. 2011;155(4):1769–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lundby A, Lage K, Weinert BT, Bekker-Jensen DB, Secher A, Skovgaard T, et al. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep. 2012;2(2):419–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao RS, Thelen JJ, Miernyk JA. Is Lys-Nvarepsilon-acetylation the next big thing in post-translational modifications? Trends Plant Sci. 2014;19(9):550–3.
Article
CAS
PubMed
Google Scholar
Alinsug MV, Chen FF, Luo M, Tai R, Jiang L, Wu K. Subcellular localization of class II HDAs in Arabidopsis thaliana: nucleocytoplasmic shuttling of HDA15 is driven by light. PLoS One. 2012;7(2):e30846.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joshi P, Greco TM, Guise AJ, Luo Y, Yu F, Nesvizhskii AI, et al. The functional interactome landscape of the human histone deacetylase family. Molecular Syst Biol. 2013;9:672.
Article
Google Scholar
Liu X, Luo M, Zhang W, Zhao J, Zhang J, Wu K, et al. Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis, subcellular localization and expression. BMC Plant Biol. 2012;12:145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tran HT, Nimick M, Uhrig RG, Templeton G, Morrice N, Gourlay R, et al. Arabidopsis thaliana Histone deacetylase 14 (HDA14) is an alpha-tubulin deacetylase that associates with PP2A and enriches in the microtubule fraction with the putative histone acetyltransferase ELP3. Plant J. 2012;71(2):263–72.
Article
CAS
PubMed
Google Scholar
Konig AC, Hartl M, Pham PA, Laxa M, Boersema PJ, Orwat A, et al. The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism. Plant Physiol. 2014;164(3):1401–14.
Article
PubMed
PubMed Central
Google Scholar
Nallamilli BR, Edelmann MJ, Zhong X, Tan F, Mujahid H, Zhang J, et al. Global analysis of lysine acetylation suggests the involvement of protein acetylation in diverse biological processes in rice (Oryza sativa). PLoS One. 2014;9(2):e89283.
Article
PubMed
PubMed Central
Google Scholar
Xiong Y, Peng X, Cheng Z, Liu W, Wang GL. A comprehensive catalog of the lysine-acetylation targets in rice (Oryza sativa) based on proteomic analyses. J Proteomic. 2016;138:20–9.
Article
CAS
Google Scholar
Smith-Hammond CL, Swatek KN, Johnston ML, Thelen JJ, Miernyk JA. Initial description of the developing soybean seed protein Lys-N-epsilon -acetylome. J Proteomic. 2014;96:56–66.
Article
CAS
Google Scholar
Melo-Braga MN, Verano-Braga T, Leon IR, Antonacci D, Nogueira FC, Thelen JJ, et al. Modulation of protein phosphorylation, N-glycosylation and Lys-acetylation in grape (Vitis vinifera) mesocarp and exocarp owing to Lobesia botrana infection. Mol Cell Proteomics. 2012;11(10):945–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith-Hammond CL, Hoyos E, Miernyk JA. The pea seedling mitochondrial N-epsilon-lysine acetylome. Mitochondrion. 2014;19:154–65.
Article
CAS
PubMed
Google Scholar
Zhang Y, Song L, Liang W, Mu P, Wang S, Lin Q. Comprehensive profiling of lysine acetylproteome analysis reveals diverse functions of lysine acetylation in common wheat. Sci Rep. 2016;6:21069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papaefthimiou D, Likotrafiti E, Kapazoglou A, Bladenopoulos K, Tsaftaris A. Epigenetic chromatin modifiers in barley: III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA. Plant Physiol Biochem. 2010;48(2–3):98–107.
Article
CAS
PubMed
Google Scholar
Latrasse D, Benhamed M, Henry Y, Domenichini S, Kim W, Zhou DX, et al. The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis. BMC Plant Biol. 2008;8:121.
Article
PubMed
PubMed Central
Google Scholar
Xiao J, Zhang H, Xing L, Xu S, Liu H, Chong K, et al. Requirement of histone acetyltransferases HAM1 and HAM2 for epigenetic modification of FLC in regulating flowering in Arabidopsis. J Plant Physiol. 2013;170(4):444–51.
Article
CAS
PubMed
Google Scholar
Defraia CT, Wang Y, Yao J, Mou Z. Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains. BMC Plant Biol. 2013;13:102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelissen H, De Groeve S, Fleury D, Neyt P, Bruno L, Bitonti MB, et al. Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proc Natl Acad Sci U S A. 2010;107(4):1678–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benhamed M, Bertrand C, Servet C, Zhou DX. Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell. 2006;18(11):2893–903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han SK, Song JD, Noh YS, Noh B. Role of plant CBP/p300-like genes in the regulation of flowering time. Plant J. 2007;49(1):103–14.
Article
CAS
PubMed
Google Scholar
Heisel TJ, Li CY, Grey KM, Gibson SI. Mutations in HISTONE ACETYLTRANSFERASE1 affect sugar response and gene expression in Arabidopsis. Front Plant Sci. 2013;4:245.
Article
PubMed
PubMed Central
Google Scholar
Li C, Xu J, Li J, Li Q, Yang H. Involvement of Arabidopsis histone acetyltransferase HAC family genes in the ethylene signaling pathway. Plant Cell Physiol. 2014;55(2):426–35.
Article
CAS
PubMed
Google Scholar
Lindner M, Simonini S, Kooiker M, Gagliardini V, Somssich M, Hohenstatt M, et al. TAF13 interacts with PRC2 members and is essential for Arabidopsis seed development. Dev Biol. 2013;379(1):28–37.
Article
CAS
PubMed
Google Scholar
Luo M, Tai R, Yu CW, Yang S, Chen CY, Lin WD, et al. Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis. Plant J. 2015;82(6):925–36.
Article
CAS
PubMed
Google Scholar
Cigliano RA, Cremona G, Paparo R, Termolino P, Perrella G, Gutzat R, et al. Histone deacetylase AtHDA7 is required for female gametophyte and embryo development in Arabidopsis. Plant Physiol. 2013;163(1):431–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Chen CY, Wang KC, Luo M, Tai R, Yuan L, et al. PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell. 2013;25(4):1258–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu X, Jiang D, Yang W, Jacob Y, Michaels SD, He Y. Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing. PLoS Genet. 2011;7(11):e1002366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Li LC, Chen WQ, Chen X, Xu ZH, Bai SN. HDA18 affects cell fate in Arabidopsis root epidermis via histone acetylation at four kinase genes. Plant Cell. 2013;25(1):257–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Cao H, Sun Y, Li X, Chen F, Carles A, et al. Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone deacetylation. Plant Cell. 2013;25(1):149–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi SM, Song HR, Han SK, Han M, Kim CY, Park J, et al. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J. 2012;71(1):135–46.
Article
CAS
PubMed
Google Scholar
Grandperret V, Nicolas-Frances V, Wendehenne D, Bourque S. Type-II histone deacetylases: elusive plant nuclear signal transducers. Plant Cell Environ. 2014;37(6):1259–69.
Article
CAS
PubMed
Google Scholar
Shurin JB, Burkart MD, Mayfield SP, Smith VH. Recent progress and future challenges in algal biofuel production. F1000Res. 2016;4(5). doi:10.12688/f1000research.9217.1.
Bhullar NK, Gruissem W. Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol Adv. 2013;31(1):50–7.
Article
CAS
PubMed
Google Scholar
Patel RV, Nahal HK, Breit R, Provart NJ. BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species. Plant J. 2012;71(6):1038–50.
Article
CAS
PubMed
Google Scholar
Pandey R, Muller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, et al. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 2002;30(23):5036–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007;5(10):981–9.
Article
CAS
PubMed
Google Scholar
Bourque S, Jeandroz S, Grandperret V, Lehotai N, Aime S, Soltis DE, et al. The evolution of HD2 proteins in green plants. Trends Plant Sci. 2016;21(12):1008–16.
Article
CAS
PubMed
Google Scholar
Luo M, Wang YY, Liu X, Yang S, Wu K. HD2 proteins interact with RPD3-type histone deacetylases. Plant Signal Behav. 2012;7(6):608–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000;273(2):793–8.
Article
CAS
PubMed
Google Scholar
Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev. Mol Cell Biol. 2014;15(8):536–50.
Article
CAS
PubMed
Google Scholar
Uhrig RG, Labandera AM, Moorhead GB. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines. Trends Plant Sci. 2013;18(9):505–13.
Article
CAS
PubMed
Google Scholar
Wang XW, Guo LY, Han M, Shan K. Diversity, evolution and expression profiles of histone acetyltransferases and deacetylases in oomycetes. BMC Genomics. 2016;17(1):927.
Article
PubMed
PubMed Central
Google Scholar
Moorhead GB, De Wever V, Templeton G, Kerk D. Evolution of protein phosphatases in plants and animals. Biochem J. 2009;417(2):401–9.
Article
CAS
PubMed
Google Scholar
Heroes E, Lesage B, Gornemann J, Beullens M, Van Meervelt L, Bollen M. The PP1 binding code: a molecular-lego strategy that governs specificity. FEBS J. 2013;280(2):584–95.
Article
CAS
PubMed
Google Scholar
Berndsen CE, Albaugh BN, Tan S, Denu JM. Catalytic mechanism of a MYST family histone acetyltransferase. Biochemistry. 2007;46(3):623–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanner KG, Trievel RC, Kuo MH, Howard RM, Berger SL, Allis CD, et al. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J Biol Chem. 1999;274(26):18157–60.
Article
CAS
PubMed
Google Scholar
Liu X, Wang L, Zhao K, Thompson PR, Hwang Y, Marmorstein R, et al. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature. 2008;451(7180):846–50.
Article
CAS
PubMed
Google Scholar
Zulawski M, Schulze G, Braginets R, Hartmann S, Schulze WX. The Arabidopsis Kinome: phylogeny and evolutionary insights into functional diversification. BMC Genomics. 2014;15:548.
Article
PubMed
PubMed Central
Google Scholar
Smart SK, Mackintosh SG, Edmondson RD, Taverna SD, Tackett AJ. Mapping the local protein interactome of the NuA3 histone acetyltransferase. Protein Sci. 2009;18(9):1987–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitchell L, Huard S, Cotrut M, Pourhanifeh-Lemeri R, Steunou AL, Hamza A, et al. mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases. Proc Natl Acad Sci U S A. 2013;110(17):E1641–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frehlick LJ, Eirin-Lopez JM, Ausio J. New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones. BioEssays. 2007;29(1):49–59.
Article
CAS
PubMed
Google Scholar
Nishino T, Takeuchi K, Gascoigne KE, Suzuki A, Hori T, Oyama T, et al. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell. 2012;148(3):487–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colville A, Alhattab R, Hu M, Labbe H, Xing T, Miki B. Role of HD2 genes in seed germination and early seedling growth in Arabidopsis. Plant Cell Rep. 2011;30(10):1969–79.
Article
CAS
PubMed
Google Scholar
Han Z, Yu H, Zhao Z, Hunter D, Luo X, Duan J, et al. AtHD2D Gene plays a role in plant growth, development, and response to Abiotic stresses in Arabidopsis thaliana. Frontiers Plant Sci. 2016;7:310.
Google Scholar
Novatchkova M, Eisenhaber F. Linking transcriptional mediators via the GACKIX domain super family. Curr Biol. 2004;14(2):R54–5.
Article
CAS
PubMed
Google Scholar
Fortschegger K, Shiekhattar R. Plant homeodomain fingers form a helping hand for transcription. Epigenetics. 2011;6(1):4–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee BH, Lee H, Xiong L, Zhu JK. A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell. 2002;14(6):1235–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, et al. DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell. 2012;24(5):1815–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee CP, Eubel H, Millar AH. Diurnal changes in mitochondrial function reveal daily optimization of light and dark respiratory metabolism in Arabidopsis. Mol Cell Proteomics. 2010;9(10):2125–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andronis C, Barak S, Knowles SM, Sugano S, Tobin EM. The clock protein CCA1 and the bZIP transcription factor HY5 physically interact to regulate gene expression in Arabidopsis. Mol Plant. 2008;1(1):58–67.
Article
CAS
PubMed
Google Scholar
Michael TP, McClung CR. Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiol. 2003;132(2):629–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelissen H, Fleury D, Bruno L, Robles P, De Veylder L, Traas J, et al. The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Proc Natl Acad Sci U S A. 2005;102(21):7754–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greenham K, McClung CR. Integrating circadian dynamics with physiological processes in plants. Nat Rev. Genet. 2015;16(10):598–610.
Article
CAS
PubMed
Google Scholar
Keeling PJ. Functional and ecological impacts of horizontal gene transfer in eukaryotes. Curr Opin Genet Dev. 2009;19(6):613–9.
Article
CAS
PubMed
Google Scholar
Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev. Genet. 2008;9(8):605–18.
Article
CAS
PubMed
Google Scholar
Raymond JA, Kim HJ. Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS One. 2012;7(5):e35968.
Article
CAS
PubMed
PubMed Central
Google Scholar
Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A. 2006;103(31):11647–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uhrig RG, Kerk D, Moorhead GB. Evolution of bacterial-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer. Plant Physiol. 2013;163(4):1829–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bork P. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins. 1993;17(4):363–74.
Article
CAS
PubMed
Google Scholar
Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR. Marine natural products. Nat Prod Rep. 2015;32(2):116–211.
Article
CAS
PubMed
Google Scholar
Fernando IP, Nah JW, Jeon YJ. Potential anti-inflammatory natural products from marine algae. Environ Toxicol Pharmacol. 2016;48:22–30.
Article
CAS
PubMed
Google Scholar
Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, et al. Microalgae biorefinery: high value products perspectives. Bioresour Technol. 2017;229:53–62.
Article
CAS
PubMed
Google Scholar
Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14(9):755–63.
Article
CAS
PubMed
Google Scholar
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35(Web Server issue):W585–7.
Article
PubMed
PubMed Central
Google Scholar
Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300(4):1005–16.
Article
CAS
PubMed
Google Scholar
Matsuda S, Vert JP, Saigo H, Ueda N, Toh H, Akutsu T. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 2005;14(11):2804–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petsalaki EI, Bagos PG, Litou ZI, Hamodrakas SJ. PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization. Genomics Proteomics Bioinformatics. 2006;4(1):48–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Small I, Peeters N, Legeai F, Lurin C. Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics. 2004;4(6):1581–90.
Article
CAS
PubMed
Google Scholar
Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996;241(3):779–86.
Article
CAS
PubMed
Google Scholar
Emanuelsson O, Nielsen H, von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 1999;8(5):978–84.
Article
CAS
PubMed
PubMed Central
Google Scholar