Abadía J, Morales F, Abadía A. Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant Soil. 1999;215(2):183–92.
Article
Google Scholar
Albrecht U, Bowman KD. Gene expression in Citrus sinensis (L.) Osbeck following infection with the bacterial pathogen Candidatus Liberibacter asiaticus causing Huanglongbing in Florida. Plant Sci. 2008;175:291–306.
Article
CAS
Google Scholar
Albrecht U, Bowman KD. Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus. Plant Sci. 2012;185-186:118–30.
Article
CAS
PubMed
Google Scholar
Andrés-Colás N, Sancenón V, Rodríguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, et al. The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J. 2006;45(2):225–36.
Article
PubMed
Google Scholar
Aritua V, Achor D, Gmitter FG, Albrigo G, Wang N. Transcriptional and microscopic analyses of citrus stem and root responses to Candidatus Liberibacter asiaticus infection. PLoS One. 2013;8(9):e73742.
Article
CAS
PubMed
PubMed Central
Google Scholar
Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol. 2012;159(1):266–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolton MD. Primary metabolism and plant defense-fuel for the fire. Mol Plant-Microbe Interact. 2009;22(5):487–97.
Article
CAS
PubMed
Google Scholar
Bové JM. Huanglongbing: a destructive, newly-emerging, century old disease of citrus. J Plant Pathol. 2006;88:7–37.
Google Scholar
Bové JM, Renaudin J, Saillard C, Foissac X, Garnier M. Spiroplasma citri, a plant pathogenic mollicute: relationships with its two hosts, the plant and insect vector. Annu Rev Phytopathol. 2003;41:483–500.
Article
PubMed
Google Scholar
Bowman K, Albrecht U. Comparison of gene expression changes in susceptible, tolerant and resistant hosts in response to infection with Citrus tristeza virus and huanglongbing. J Citrus Pathol. 2015;2(1). http://escholarship.org/uc/item/5qt4z9c0#page-4.
Canales E, Coll Y, Hernández I, Portieles R, García MR, et al. Candidatus Liberibacter asiaticus’, causal agent of citrus huanglongbing, is reduced by treatment with brassinosteroids. PLoS One. 2016;11:e0146223.
Article
PubMed
PubMed Central
Google Scholar
Chini A, Fonseca S, Fernandez G, Adie B, Chico J, Lorenzo O, et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature. 2007;448:666–71.
Article
CAS
PubMed
Google Scholar
Chinnappa KSA, Nguyen TTS, Hou J, Wu Y, McCurdy DW. Phloem parenchyma transfer cells in Arabidopsis-an experimental system to identify transcriptional regulators of wall ingrowth formation. Front Plant Sci. 2013;4:102.
CAS
Google Scholar
Cristofani-Yaly M, Berger IJ, Targon MLP, Takita MA, Dorta S, Freitas-Astúa J, et al. Differential expression of genes identified from Poncirus Trifoliata tissue inoculated with CTV through EST analysis and in silico hybridization. Genet Mol Biol. 2007;30(3):972–9.
Article
CAS
Google Scholar
Dalchau N, Baek SJ, Briggs HM, Robertson FC, Dodd AN, Gardner MJ, et al. The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. PNAS USA. 2011;108(12):5104–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dawson WO, Bar-Joseph M, Garnsey SM, Moreno P. Citrus Tristeza Virus: making an ally from an enemy. Annu Rev Phytopathol. 2015;53:137–55.
Article
CAS
PubMed
Google Scholar
De Bruyne L, Höfte M, De Vleesschauwer D. Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant. 2014;7(6):943–59.
Article
CAS
PubMed
Google Scholar
Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, et al. Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta. 2002;216(2):334–44.
Article
CAS
PubMed
Google Scholar
Ding X, Cao Y, Huang L, Zhao J, Xu C, Li, X et al. Activation of the indole-3-acetic acid–amido synthetase GH3–8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice. Plant Cell 2008;20(1): 228-240.
Doering-Saad C, Newbury H, Couldridge C, Bale J, Pritchard J. A phloem-enriched cDNA library from Ricinus: insights into phloem function. J Exp Botany. 2006;57(12):3183–93.
Article
CAS
Google Scholar
Doering-Saad C, Newbury HJ, Bale JS, Pritchard J. Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. J Exp Botany. 2002;53:631–7.
Article
CAS
Google Scholar
Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, Lin H, et al. Complete genome sequence of citrus huanglongbing bacterium, ‘Candidatus Liberibacter asiaticus’ obtained through metagenomics. Mol Plant-Microbe Interact. 2009;22(8):1011–20.
Article
CAS
PubMed
Google Scholar
Edwards J, Martin AP, Andriunas F, Offler CE., Patrick JW., McCurdy, DW. GIGANTEA is a component of a regulatory pathway determining wall ingrowth deposition in phloem parenchyma transfer cells of Arabidopsis Thaliana. Plant J 2010;63(4): 651-661.
Fan J, Chen C, Achor DS, Brlansky RH, Li ZG, Gmitter FG Jr. Differential anatomical responses of tolerant and susceptible citrus species to the infection of ‘Candidatus Liberibacter asiaticus. Physiol Mol Plant Path. 2013;83:69–74.
Article
Google Scholar
Fan J, Chen C, Yu Q, Brlansky RH, Lia ZG, Gmitter FG Jr. Comparative iTRAQ proteome and transcriptome analyses of sweet orange infected by “Candidatus Liberibacter asiaticus”. Physiol Plant. 2011;143:235–45.
Article
CAS
PubMed
Google Scholar
Fan J, Chen C, Yu Q, Khalaf A, Achor DS, Brlansky RH, et al. Comparative transcriptional and anatomical analyses of tolerant rough lemon and susceptible sweet orange in response to ‘Candidatus Liberibacter asiaticus’ infection. Mol Plant-Microbe Interact. 2012;25(11):1396–407.
Article
CAS
PubMed
Google Scholar
Fan J, Hill L, Crooks C, Doerner P, Lamb C. Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol. 2009;150(4):1750–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer WN, Loo DD, Ludewig U, Boorer KJ, Tegeder M, Rentsch D, et al. Low and high affinity amino acid H+−cotransporters for cellular import of neutral and charged amino acids. Plant J. 2002;29(6):717–31.
Article
CAS
PubMed
Google Scholar
Folimonova SY, Achor DS. Early events of citrus greening (huanglongbing) disease development at the ultrastructural level. Phytopathology. 2010;100(9):949–58.
Article
PubMed
Google Scholar
Fu S, Shao J, Zhou C, Hartung JS. Transcriptome analysis of sweet orange trees infected with ‘Candidatus Liberibacter asiaticus’ and two strains of Citrus Tristeza Virus. BMC Genomics. 2016;17:349.
Article
PubMed
PubMed Central
Google Scholar
Gao W, Xiao S, Li HY, Tsao SW, Chye ML. Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy metal binding farnesylated protein AtFP6. New Phytol. 2009;181(1):89–102.
Article
CAS
PubMed
Google Scholar
Gmitter Jr. FG, Chen C, Machado MA, de Souza AA, Ollitrault P., Froehlicher Y et al. Citrus genomics. Tree Genet Genomes. 2012; 8(3): 611-626.
Goodspeed D, Chehab EW, Min-Venditti A, Braam J, Covington MF. Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. PNAS USA. 2012;109(12):4674–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gould N, Thorpe MR, Minchin PE, Pritchard J, White PJ. Solute is imported to elongating root cells of barley as a pressure driven-flow of solution. Funct. Plant Biol. 2004;31(4):391–7.
CAS
Google Scholar
Graham JH, Johnson EG, Gottwald TR, Irey MS. Presymptomatic fibrous root decline in citrus trees caused by Huanglongbing and potential interaction with Phytophthora spp. Plant Dis. 2013;97:1195–9.
Article
Google Scholar
Grunewald W, Vanholme B, Pauwels L, Plovie E, Inzé D, Gheysen G, et al. Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin. EMBO Rep. 2009;10(8):923–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harmer SL. The circadian system in higher plants. Annu Rev Plant Biol. 2009;60:357–67.
Article
CAS
PubMed
Google Scholar
Hartung JS, Shao J, Kuykendall LD. Comparison of the ‘Ca. Liberibacter asiaticus’ genome adapted for an intracellular lifestyle with other members of the Rhizobiales. PLoS One. 2011;6(8):e23289.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunt E, Gattolin S, Newbury HJ, Bale JS, Tseng H-M, Barrett DA, et al. A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected. J exp. Botany. 2010;61(1):55–64.
CAS
Google Scholar
Jiang C-J, Shimono M, Sugano S, Kojima M, Liu X, Inoue H, et al. Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol Plant-Microbe Interact. 2013;26(3):287–96.
Article
CAS
PubMed
Google Scholar
Johnson EG, Wu J, Bright DB, Graham JH. Association of ‘Candidatus Liberibacter asiaticus’ root infection, but not phloem plugging with root loss on huanglongbing-affected trees prior to appearance of foliar symptoms. Plant Pathol. 2014;63:290–8.
Article
Google Scholar
Journot-Catalino N, Somssich IE, Roby D, Kroj T. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell. 2006;18(11):3289–302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karley A, Douglas A, Parker W. Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. J Exp Botany. 2002;205(19):300r9–3018.
Google Scholar
Kehr J, Butz A. Endogenous RNA constituents of the phloem and their possible roles in long-distance signaling in phloem. In: Thompson GA, van Bel AJE, editors. Molecular cell biology, systemic communication, biotic interactions. Oxford,UK: Wiley-Blackwell. https://doi.org/10.1002/9781118382806.ch95.
Kim JS, Sagaram US, Burns JK, Li JL, Wang N. Response of sweet orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ infection: microscopy and microarray analyses. Phytopathology. 2009;99(1):50–7.
Article
PubMed
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10 (R25). https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2009-10-3-r25?site=genomebiology.biomedcentral.com.
Liao HL, Burns JK. Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: comparison with girdled fruit. J Exp Botany. 2012;63(8):3307–19.
Article
CAS
Google Scholar
Liu Q, Zhu A, Chai L, Zhou W, Yu K, Ding J, et al. Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development. J Exp Botany. 2009;60(3):801–13.
Article
CAS
Google Scholar
Liu Y, Wang G, Wang Z, Yang F, Wu G, Hong N. Identification of differentially expressed genes in response to infection of a mild Citrus tristeza virus isolate in Citrus aurantifolia by suppression subtractive hybridization. Sci Hort. 2012;134:144–9.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell. 2003;15(1):165–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lough TJ, Lucas WJ. Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol. 2006;57:203–32.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1–21.
Article
Google Scholar
Mafra V, Martins P, Francisco C, Ribeiro-Alves M, Freitas-Astua J, Machado MA. Candidatus Liberibacter americanus induces significant reprogramming of the transcriptome of the susceptible citrus genotype. BMC Genomics. 2013;14(1):247.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinelli F, Reagan RL, Uratsu SL, Phu ML, Albrecht U, Zhao W, et al. Gene regulatory networks elucidating huanglongbing disease mechanisms. PLoS One. 2013;8(9):e74256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinelli F, Uratsu SL, Albrecht U, Reagan RL, Phu ML, Britton M, et al. Transcriptome profiling of citrus fruit response to Huanglongbing disease. PLoS One. 2012;7(5):e38039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mauch-Mani B, Mauch F. The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol. 2005;8(4):409–14.
Article
CAS
PubMed
Google Scholar
McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, et al. Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol. 2005;139(2):949–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the gene ontology consortium. Nucleic Acid Res. 2010;38:D247–52.
Article
Google Scholar
Moreno P, Ambros S, Albiach-Marti MR, Guerri J, Pena L. Citrus tristeza virus : a pathogen that changed the course of the citrus industry. Mol Plant Pathol. 2008;9(2):251–68.
Article
CAS
PubMed
Google Scholar
Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, et al. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 2003;33(5):887–98.
Article
CAS
PubMed
Google Scholar
Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science. 2006;312:436–9.
Article
CAS
PubMed
Google Scholar
Okumoto S, Schmidt R, Tegeder M, Fischer WN, Rentsch D, Frommer WB, et al. High affinity amino acid transporters specifically expressed in xylem parenchyma and developing seeds of Arabidopsis. J Biol Chem. 2002;277(47):45338–46.
Article
CAS
PubMed
Google Scholar
Park DH, Somers DE, Kim YS, Choy Y, Lim HK, Soh MS, et al. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science. 1999;285:1579–82.
Article
CAS
PubMed
Google Scholar
Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC. Networking by small-molecule hormones in plant immunity. Nature Chem Biol. 2009;5(5):308–16.
Article
CAS
Google Scholar
Ponder K, Pritchard J, Harrington R, Bale J. Difficulties in location and acceptance of phloem sap combined with reduced concentration of phloem amino acids explain lowered performance of the aphid Rhopalosiphum padi on nitrogen deficient barley (Hordeum vulgare) seedlings. Entomologia Experimentalis et Applicata. 2000;97(2):203–10.
Article
Google Scholar
Rawat N, Kiran SP, Du D, Gmitter FG, Deng Z. Comprehensive meta-analysis, co-expression, and miRNA nested network analysis identifies gene candidates in citrus against Huanglongbing disease. BMC Plant Biol. 2015;15:184.
Article
PubMed
PubMed Central
Google Scholar
Rentsch D, Hirner B, Schmelzer E, Frommer WB. Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell. 1996;8(8):1437–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roden LC, Ingle RA. Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant–pathogen interactions. Plant Cell. 2009;21(9):2546–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodríguez-Celma J, Pan IC, Li W, Lan P, Buckhout TJ, Schmidt W. The transcriptional response of Arabidopsis leaves to Fe deficiency. Frontiers Plant Sci. 2013;4(276). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719017/pdf/fpls-04-00276.pdf.
Rosa BA, Jiao Y, Oh S, Montgomery BL, Qin W, Chen J. Frequency-based time-series gene expression recomposition using PRIISM. BMC Syst Biol. 2012;6:69.
Article
PubMed
PubMed Central
Google Scholar
Roudier F. The COBRA family of putative GPI-anchored proteins in Arabidopsis. A new fellowship in expansion. Plant Physiol. 2002;130:538–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schindelman G., Benfey P. NCOBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev. 2001; 15: 1115-1127.
Schwachtje J, Baldwin IT. Why does herbivore attack reconfigure primary metabolism? Plant Physiol. 2008;146(3):845–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slewinski TL, Meeley R, Braun DM. Sucrose transporter1 functions in phloem loading in maize leaves. J Exp Botany. 2009;60(3):881–92.
Article
CAS
Google Scholar
Spann TM, Schumann AW. The role of plant nutrients in disease development with emphasis on citrus and huanglongbing. Proc Florida State Hort Soc. 2009:169–71.
Staswick PE. JAZing up jasmonate signaling. Trends Plant Sci. 2008;13(2):66–71.
Article
CAS
PubMed
Google Scholar
Terry N, Low G. Leaf chlorophyll content and its relation to the intracellular localization of iron. J Plant Nutr. 1982;5:301–10.
Article
CAS
Google Scholar
Thilmony R, Underwood W, He SY. Genome wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157: H7. Plant J. 2006;46(1):34–53.
Article
CAS
PubMed
Google Scholar
Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37(6):914–39.
Article
CAS
PubMed
Google Scholar
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature. 2007;448:661–5.
Article
CAS
PubMed
Google Scholar
Wang D, Amornsiripanitch N, Dong X. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog. 2006;2(11):e123.
Article
PubMed
PubMed Central
Google Scholar
Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol. 2007;17(20):1784–90.
Article
CAS
PubMed
Google Scholar
Wang N, Trivedi P. Citrus huanglongbing: a newly relevant disease presents unprecedented challenges. Phytopathology. 2013;103:652–65.
Article
PubMed
Google Scholar
Xu Q, Chen L-L, Ruan X, Chen D, Zhu A, Chen C, et al. The draft genome of sweet orange (Citrus sinensis). Nat Genet. 2013;45(1):59–66.
Article
CAS
PubMed
Google Scholar
Yang F, Wang G-P, Jiang B, Liu Y-H, Liu Y, Wu G-W, et al. Differentially expressed genes and temporal and spatial expression of genes during interactions between Mexican lime (Citrus aurantifolia) and a severe Citrus tristeza virus isolate. Physiol Mol Plant Pathol. 2013;83:17–24.
Article
CAS
Google Scholar
Yan J, Yuan F, Long G. Selection of reference genes for quantitative real-time RT-PCR analysis in citrus. Mol Biol Rep. 2012;39(2):1831–8.
Article
CAS
PubMed
Google Scholar
Yu J-W, Rubio V, Lee N-Y, Bai S, Lee S-Y, Kim S-S, et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell. 2008;32(5):617–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeier J. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ. 2013;36(12):2085–103.
Article
CAS
PubMed
Google Scholar
Zhang Z, Li Q, Li Z, Staswick PE, Wang M-Y, Zhu Y, et al. Dual regulation role of GH3. 5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol. 2007;145(2):450–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng Z-L, Zhao Y. Transcriptome comparison and gene coexpression network analysis provide a systems view of citrus response to ‘Candidatus Liberibacter asiaticus’ infection. BMC Genomics. 2013;14(1):1.
Article
Google Scholar
Zhong Y, Cheng C-Z, Jiang N-H, Jiang B, Zhang Y-Y, Wu B, et al. Comparative Transcriptome and iTRAQ proteome analyses of citrus root responses to Candidatus Liberibacter asiaticus infection. PLoS One. 2015;10(6):e0126973.
Article
PubMed
PubMed Central
Google Scholar