Shubin N, Tabin C, Carroll S. Deep homology and the origins of evolutionary novelty. Nature. 2009;457(7231):818–23. doi:10.1038/nature07891. PubMed PMID: 19212399
Article
CAS
PubMed
Google Scholar
Wagner GP, Lynch VJ. Evolutionary novelties. Curr Biol. 2010;20(2):R48–52. https://doi.org/10.1016/j.cub.2009.11.010. PubMed PMID: 20129035
Article
CAS
PubMed
Google Scholar
Strickberger MW. Evolution: Jones and Bartlett; 2000. p. 308.
Google Scholar
Vorbach C, Capecchi MR, Penninger JM. Evolution of the mammary gland from the innate immune system? BioEssays. 2006;28(6):606–16. doi:10.1002/bies.20423. PubMed PMID: 16700061
Article
CAS
PubMed
Google Scholar
Oliver JC, Beaulieu JM, Gall LF, Piel WH, Monteiro A. Nymphalid eyespot serial homologues originate as a few individualized modules. Proc Biol Sci. 2014;281(1787) https://doi.org/10.1098/rspb.2013.3262. PubMed PMID: 24870037; PubMed Central PMCID: PMCPMC4071533
Oliver JC, Tong XL, Gall LF, Piel WH, Monteiro AA. Single origin for nymphalid butterfly eyespots followed by widespread loss of associated gene expression. PLoS Genet. 2012;8(8):e1002893. doi:10.1371/journal.pgen.1002893. PubMed PMID: 22916033; PubMed Central PMCID: PMCPMC3420954
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark-Hachtel CM, Linz DM, Tomoyasu Y. Insights into insect wing origin provided by functional analysis of vestigial in the red flour beetle, Tribolium Castaneum. Proc Natl Acad Sci. 2013;110(42):16951–6. doi:10.1073/pnas.1304332110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medved V, Marden JH, Fescemyer HW, Der JP, Liu J, Mahfooz N, et al. Origin and diversification of wings: insights from a neopteran insect. Proc Natl Acad Sci U S A. 2015;112(52):15946–51. doi:10.1073/pnas.1509517112. PubMed PMID: WOS:000367234700060
Article
CAS
PubMed
PubMed Central
Google Scholar
Niwa N, Akimoto-Kato A, Niimi T, Tojo K, Machida R, Hayashi S. Evolutionary origin of the insect wing via integration of two developmental modules. Evol Dev. 2010;12(2):168–76.
Article
CAS
PubMed
Google Scholar
Gao F, Davidson EH. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proc Natl Acad Sci U S A. 2008;105(16):6091–6. doi:10.1073/pnas.0801201105. PubMed PMID: WOS:000255356000027
Article
CAS
PubMed
PubMed Central
Google Scholar
Glassford WJ, Johnson WC, Dall NR, Smith SJ, Liu Y, Boll W, et al. Co-option of an ancestral Hox-regulated network underlies a recently evolved morphological novelty. Dev Cell. 2015;34(5):520–31. doi:10.1016/j.devcel.2015.08.005. PubMed PMID: 26343453; PubMed Central PMCID: PMCPMC4573913
Article
CAS
PubMed
PubMed Central
Google Scholar
Moczek AP, Rose DJ. Differential recruitment of limb patterning genes during development and diversification of beetle horns. Proc Natl Acad Sci U S A 2009;106(22):8992-8997. doi:10.1073/pnas.0809668106. PubMed PMID: ISI:000266580500040.
Monteiro A. Evolution and Development: Molecules. The Princeton guide to evolution. 11. Princeton, Oxford: Princeton University Press; 2014. p. 444-452.
Moczek AP, Rose DJ. Differential recruitment of limb patterning genes during development and diversification of beetle horns. Proc Natl Acad Sci U S A 2009;106(22):8992-8997. doi: 10.1073/pnas.0809668106. PubMed PMID: 19451631; PubMed Central PMCID: PMCPMC2690047.
Vallin A, Jakobsson S, Lind J, Wiklund C. Prey survival by predator intimidation: an experimental study of peacock butterfly defence against blue tits. Proc Biol Sci. 2005;272(1569):1203–7. doi:10.1098/rspb.2004.3034. PubMed PMID: 16024383; PubMed Central PMCID: PMCPMC1564111
Article
PubMed
PubMed Central
Google Scholar
Kodandaramaiah U. The evolutionary significance of butterfly eyespots. Behav Ecol. 2011;22(6):1264–71. https://doi.org/10.1093/beheco/arr123.
Article
Google Scholar
Monteiro A. Origin, development, and evolution of butterfly eyespots. Annu Rev. Entomol. 2015;60:253–71. doi:10.1146/annurev-ento-010814-020942. PubMed PMID: 25341098
Article
CAS
PubMed
Google Scholar
Westerman EL, Hodgins-Davis A, Dinwiddie A, Monteiro A. Biased learning affects mate choice in a butterfly. Proc Natl Acad Sci U S A. 2012;109(27):10948–53. doi:10.1073/pnas.1118378109. PubMed PMID: 22689980; PubMed Central PMCID: PMCPMC3390860
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliver JC, Robertson KA, Monteiro A. Accommodating natural and sexual selection in butterfly wing pattern evolution. Proc Biol Sci. 2009;276(1666):2369–75. doi:10.1098/rspb.2009.0182. PubMed PMID: 19364741; PubMed Central PMCID: PMCPMC2690465
Article
PubMed
PubMed Central
Google Scholar
Robertson KA, Monteiro A. Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils. Proc Biol Sci. 2005;272(1572):1541–6. https://doi.org/10.1098/rspb.2005.3142. PubMed PMID: 16048768; PubMed Central PMCID: PMCPMC1559841
Article
PubMed
PubMed Central
Google Scholar
Stevens M. The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera. Biol Rev. Camb Philos Soc. 2005;80(4):573–88. https://doi.org/10.1017/S1464793105006810. PubMed PMID: 16221330
Article
PubMed
Google Scholar
Prudic KL, Jeon C, Cao H, Monteiro A. Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation. Science. 2011;331(6013):73–5. https://doi.org/10.1126/science.1197114. PubMed PMID: 21212355
Article
CAS
PubMed
Google Scholar
Schachat SR, Oliver JC, Monteiro A, et al. BMC Evol Biol. 2015;15:20. doi:10.1186/s12862-015-0300-x. PubMed PMID: 25886182; PubMed Central PMCID: PMCPMC4335541
Article
PubMed
PubMed Central
Google Scholar
Carroll SB, Gates J, Keys DN, Paddock SW, Panganiban GEF, Selegue JE, et al. Pattern-formation and eyespot determination in butterfly wings. Science. 1994;265(5168):109–14. PubMed PMID: WOS:A1994NV30100038
Article
CAS
PubMed
Google Scholar
Keys DN, Lewis DL, Selegue JE, Pearson BJ, Goodrich LV, Johnson RL, et al. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science. 1999;283(5401):532–4. PubMed PMID: 9915699
Article
CAS
PubMed
Google Scholar
Monteiro A, Glaser G, Stockslager S, Glansdorp N, Ramos D. Comparative insights into questions of lepidopteran wing pattern homology. BMC Dev Biol. 2006;6:52. doi:10.1186/1471-213X-6-52. PubMed PMID: 17090321; PubMed Central PMCID: PMCPMC1654149
Article
PubMed
PubMed Central
Google Scholar
Held LI. Rethinking butterfly eyespots. Evol Biol. 2012;40(1):158–68. doi:10.1007/s11692-012-9198-z.
Article
Google Scholar
Nijhout HF. Wing pattern formation in Lepidoptera - model. J Exp Zool. 1978;206(2):119–36. PubMed PMID: WOS:A1978FT73200001
Article
Google Scholar
Adams J. Transcriptome: connecting the genome to gene function. Nature. Education. 2008;1(1):195.
Google Scholar
French V, Brakefield PM. The development of eyespot patterns on butterfly wings - Morphogen sources or sinks. Development. 1992;116(1):103–9. PubMed PMID: WOS:A1992JQ86400010
Google Scholar
Brunetti CR, Selegue JE, Monteiro A, French V, Brakefield PM, Carroll SB. The generation and diversification of butterfly eyespot color patterns. Curr Biol. 2001;11(20):1578–85. PubMed PMID: WOS:000171651700015
Article
CAS
PubMed
Google Scholar
Nijhout HF. Pattern formation on Lepidopteran wings - determination of an eyespot. Dev Biol. 1980;80(2):267–74. PubMed PMID: WOS:A1980KS92900002
Article
CAS
PubMed
Google Scholar
Ibrahim DM, Biehs B, Kornberg TB, Klebes A. Microarray comparison of anterior and posterior drosophila wing imaginal disc cells identifies novel wing genes. G3 (Bethesda). 2013;3(8):1353–62. doi:10.1534/g3.113.006569. PubMed PMID: 23749451; PubMed Central PMCID: PMCPMC3737175
Article
PubMed Central
Google Scholar
Matsuda S, Yoshiyama N, Kunnapuu-Vulli J, Hatakeyama M, Shimmi O. Dpp/BMP transport mechanism is required for wing venation in the sawfly Athalia rosae. Insect Biochem Mol Biol. 2013;43(5):466–73. doi:10.1016/j.ibmb.2013.02.008. PubMed PMID: 23499566
Article
CAS
PubMed
Google Scholar
Blair SS. Wing vein patterning in drosophila and the analysis of intercellular signaling. Annu Rev. Cell Dev Biol. 2007;23:293–319. doi:10.1146/annurev.cellbio.23.090506.123606. PubMed PMID: 17506700
Article
CAS
PubMed
Google Scholar
Brakefield PM, French V, et al. Acta Biotheor. 1993;41(4):447–68. PubMed PMID: WOS:A1993NB57300012
Article
Google Scholar
Monteiro A, Chen B, Scott LC, Vedder L, Prijs HJ, Belicha-Villanueva A, et al. The combined effect of two mutations that alter serially homologous color pattern elements on the fore and hindwings of a butterfly. BMC Genet. 2007;8:22. doi:10.1186/1471-2156-8-22. PubMed PMID: 17498305; PubMed Central PMCID: PMCPMC1878498
Article
PubMed
PubMed Central
Google Scholar
French V, Brakefield PM. Eyespot development on butterfly wings: the focal signal. Dev Biol. 1995;168(1):112–23. doi:10.1006/dbio.1995.1065. PubMed PMID: 7883067
Article
CAS
PubMed
Google Scholar
Nijhout HF. Cautery-induced colour patterns in Precis coenia (Lepidoptera: Nymphalidae). J Embryol Exp Morphol. 1985;86:191–203. PubMed PMID: 4031740
CAS
PubMed
Google Scholar
Xu S, Chisholm ADA. Galphaq-ca(2)(+) signaling pathway promotes actin-mediated epidermal wound closure in C. Elegans. Curr Biol. 2011;21(23):1960–7. doi:10.1016/j.cub.2011.10.050. PubMed PMID: 22100061; PubMed Central PMCID: PMCPMC3237753
Article
CAS
PubMed
PubMed Central
Google Scholar
Lansdown AB. Calcium: a potential central regulator in wound healing in the skin. Wound Repair Regen. 2002;10(5):271–85. PubMed PMID: 12406163
Article
PubMed
Google Scholar
Ohno Y, Otaki JM. Spontaneous long-range calcium waves in developing butterfly wings. BMC Dev Biol. 2015;15:17. doi:10.1186/s12861-015-0067-8. PubMed PMID: 25888365; PubMed Central PMCID: PMCPMC4445562
Article
PubMed
PubMed Central
Google Scholar
Wood W. Wound healing: calcium flashes illuminate early events. Curr Biol. 2012;22(1):R14–6. doi:10.1016/j.cub.2011.11.019. PubMed PMID: 22240471
Article
CAS
PubMed
Google Scholar
Hou Y, Plett PA, Ingram DA, Rajashekhar G, Orschell CM, Yoder MC, et al. Endothelial-monocyte-activating polypeptide II induces migration of endothelial progenitor cells via the chemokine receptor CXCR3. Exp Hematol. 2006;34(8):1125–32. doi:10.1016/j.exphem.2006.05.021. PubMed PMID: 16863920
Article
CAS
PubMed
Google Scholar
Carafoli E, Klee C. Calcium as Cellular Regulator. New York Oxford: Oxford University Press; 1999.
Google Scholar
Tong A, Lynn G, Ngo V, Wong D, Moseley SL, Ewbank JJ, et al. Negative regulation of Caenorhabditis Elegans epidermal damage responses by death-associated protein kinase. Proc Natl Acad Sci U S A. 2009;106(5):1457–61. doi:10.1073/pnas.0809339106. PubMed PMID: 19164535; PubMed Central PMCID: PMCPMC2629440
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol. 2010;2(11):a003996. doi:10.1101/cshperspect.a003996. PubMed PMID: 20961976; PubMed Central PMCID: PMCPMC2964179
Article
CAS
PubMed
PubMed Central
Google Scholar
Balaji R, Bielmeier C, Harz H, Bates J, Stadler C, Hildebrand A, et al. Calcium spikes, waves and oscillations in a large, patterned epithelial tissue. Sci Rep 2017;7:42786. doi: 10.1038/srep42786. PubMed PMID: 28218282; PubMed Central PMCID: PMCPMC5317010.
Smith-Bolton RK, Worley MI, Kanda H, Hariharan IK. Regenerative growth in drosophila imaginal discs is regulated by wingless and Myc. Dev Cell. 2009;16(6):797–809. 10.1016/j.devcel.2009.04.015. PubMed PMID: 19531351; PubMed Central PMCID: PMCPMC2705171
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciapponi L, Jackson DB, Mlodzik M, Bohmann D. Drosophila Fos mediates ERK and JNK signals via distinct phosphorylation sites. Genes Dev. 2001;15(12):1540–53. PubMed PMID: WOS:000169334200009
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramet M, Lanot R, Zachary D, Manfruelli P. JNK Signaling pathway is required for efficient wound healing in drosophila. Dev Biol 2002;241(1):145-156. doi: https://doi.org/10.1006/dbio.2001.0502. PubMed PMID: 11784101.
Tscharntke M, Pofahl R, Krieg T, Haase I. Ras-induced spreading and wound closure in human epidermal keratinocytes. FASEB J 2005;19(13):1836-1838. doi: https://doi.org/10.1096/fj.04-3327fje. PubMed PMID: 16170018.
Kucerova L, Broz V, Arefin B, Maaroufi HO, Hurychova J, Strnad H, et al. The drosophila Chitinase-like protein IDGF3 is involved in protection against nematodes and in wound healing. J Innate Immun. 2015; doi:10.1159/000442351. PubMed PMID: 26694862
Lee SH, Kim MY, Kim HY, Lee YM, Kim H, Nam KA, et al. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing. J Exp Med. 2015;212(7):1061–80. doi:10.1084/jem.20141601. PubMed PMID: 26056233; PubMed Central PMCID: PMCPMC4493411
Article
CAS
PubMed
PubMed Central
Google Scholar
De Gregorio E, Han SJ, Lee WJ, Baek MJ, Osaki T, Kawabata S, et al. An immune-responsive Serpin regulates the melanization cascade in drosophila. Dev Cell. 2002;3(4):581–92. PubMed PMID: 12408809
Article
CAS
PubMed
Google Scholar
Lynch JA, Roth S. The evolution of dorsal-ventral patterning mechanisms in insects. Genes Dev. 2011;25(2):107–18. doi:10.1101/gad.2010711. PubMed PMID: 21245164; PubMed Central PMCID: PMCPMC3022256
Article
CAS
PubMed
PubMed Central
Google Scholar
Capilla A, Karachentsev D, Patterson RA, Hermann A, Juarez MT, McGinnis W. Toll pathway is required for wound-induced expression of barrier repair genes in the drosophila epidermis. Proc Natl Acad Sci U S A. 2017;114(13):E2682–E8. https://doi.org/10.1073/pnas.1613917114. PubMed PMID: 28289197; PubMed Central PMCID: PMCPMC5380074
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma Z, Li C, Pan G, Li Z, Han B, Xu J, et al. Genome-wide transcriptional response of silkworm (Bombyx Mori) to infection by the microsporidian Nosema Bombycis. PLoS One. 2013;8(12):e84137. https://doi.org/10.1371/journal.pone.0084137. PubMed PMID: 24386341; PubMed Central PMCID: PMCPMC3875524
Article
PubMed
PubMed Central
Google Scholar
Carvalho L, Jacinto A, Matova N. The toll/NF-kappaB signaling pathway is required for epidermal wound repair in drosophila. Proc Natl Acad Sci U S A. 2014;111(50):E5373–82. https://doi.org/10.1073/pnas.1408224111. PubMed PMID: 25427801; PubMed Central PMCID: PMCPMC4273363
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto C, Gerttula S, Anderson KV. Plasma membrane localization of the toll protein in the syncytial drosophila embryo: importance of transmembrane signaling for dorsal-ventral pattern formation. Development. 1991;111(4):1021–8. PubMed PMID: 1879347
CAS
PubMed
Google Scholar
Monteiro A, Podlaha O. Wings, horns, and butterfly eyespots: how do complex traits evolve? PLoS Biol. 2009;7(2):e37. https://doi.org/10.1371/journal.pbio.1000037. PubMed PMID: 19243218; PubMed Central PMCID: PMCPMC2652386
Article
PubMed
Google Scholar
Rousset R, Carballes F, Parassol N, Schaub S, Cerezo D, Noselli S. Signalling crosstalk at the leading edge controls tissue closure dynamics in the drosophila embryo. PLoS Genet. 2017;13(2):e1006640. https://doi.org/10.1371/journal.pgen.1006640. PubMed PMID: 28231245; PubMed Central PMCID: PMCPMC5344535
Article
PubMed
PubMed Central
Google Scholar
McEwen DG, Cox RT, Peifer M. The canonical Wg and JNK signaling cascades collaborate to promote both dorsal closure and ventral patterning. Development. 2000;127(16):3607–17. PubMed PMID: 10903184
CAS
PubMed
Google Scholar
Gonzalez-Martinez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, et al. Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism. J Neurosci. 2004;24(46):10384–92. https://doi.org/10.1523/JNEUROSCI.3400-04.2004. PubMed PMID: 15548653
Article
CAS
PubMed
Google Scholar
Coumoul X, Deng CX. Roles of FGF receptors in mammalian development and congenital diseases. Birth Defects Res C Embryo Today. 2003;69(4):286–304. https://doi.org/10.1002/bdrc.10025. PubMed PMID: 14745970
Article
CAS
PubMed
Google Scholar
Andrenacci D, Le Bras S, Rosaria Grimaldi M, Rugarli E, Graziani F. Embryonic expression pattern of the drosophila Kallmann syndrome gene kal-1. Gene Expr Patterns. 2004;5(1):67–73. https://doi.org/10.1016/j.modgep.2004.06.004. PubMed PMID: 15533820
Article
CAS
PubMed
Google Scholar
McKay DJ, Estella C, Mann RS. The origins of the drosophila leg revealed by the cis-regulatory architecture of the Distalless gene. Development. 2009;136(1):61–71. https://doi.org/10.1242/dev.029975. PubMed PMID: 19036798; PubMed Central PMCID: PMCPMC2653810
Article
CAS
PubMed
Google Scholar
Heinke J, Wehofsits L, Zhou Q, Zoeller C, Baar KM, Helbing T, et al. BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circ Res. 2008;103(8):804–12. https://doi.org/10.1161/CIRCRESAHA.108.178434. PubMed PMID: 18787191
Article
CAS
PubMed
Google Scholar
Iwata M, Otaki JM. Spatial patterns of correlated scale size and scale color in relation to color pattern elements in butterfly wings. J Insect Physiol. 2016;85:32–45. https://doi.org/10.1016/j.jinsphys.2015.11.013. PubMed PMID: 26654884
Article
CAS
PubMed
Google Scholar
Iwasaki M, Ohno Y, Otaki JM. Butterfly eyespot organiser: in vivo imaging of the prospective focal cells in pupal wing tissues. Sci Rep. 2017;7:40705. https://doi.org/10.1038/srep40705. PubMed PMID: 28094808; PubMed Central PMCID: PMCPMC5240560
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhardwaj S, Prudic KL, Bear A, Das Gupta M, Cheong WF, Wenk MR, et al. Sex differences in 20-hydroxyecdysone hormone levels control sexual dimorphism in butterfly wing patterns. (in review).
Ibar C, Cataldo VF, Vasquez-Doorman C, Olguin P, Glavic A. Drosophila p53-related protein kinase is required for PI3K/TOR pathway-dependent growth. Development. 2013;140(6):1282–91. https://doi.org/10.1242/dev.086918. PubMed PMID: 23444356
Article
CAS
PubMed
Google Scholar
Prudic KL, Stoehr AM, Wasik BR, Monteiro A. Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity. Proc Biol Sci. 2015;282(1798):20141531. https://doi.org/10.1098/rspb.2014.1531. PubMed PMID: 25392465; PubMed Central PMCID: PMCPMC4262162
Article
PubMed
PubMed Central
Google Scholar
Cakouros D, Mills K, Denton D, Paterson A, Daish T, Kumar S. dLKR/SDH regulates hormone-mediated histone arginine methylation and transcription of cell death genes. J Cell Biol. 2008;182(3):481–95. https://doi.org/10.1083/jcb.200712169. PubMed PMID: PMC2500134
Article
CAS
PubMed
PubMed Central
Google Scholar
Monteiro A, Tong XL, Bear A, Liew SF, Bhardwaj S, Wasik BR, et al. Differential expression of Ecdysone receptor leads to variation in phenotypic plasticity across serial Homologs. PLoS Genet. 2015;11(9) https://doi.org/10.1371/journal.pgen.1005529. PubMed PMID: WOS:000362269000043
Monteiro A. Physiology and evolution of wing pattern plasticity in Bicyclus butterflies: a critical review of the literature. In: Sekimura T, Nijhout HF, editors. Diversity and evolution of butterfly wing patterns: an integrative approach: Springer; in press.
Vieira CU, Bonetti AM, Simoes ZL, Maranhao AQ, Costa CS, Costa MC, et al. Farnesoic acid O-methyl transferase (FAMeT) isoforms: conserved traits and gene expression patterns related to caste differentiation in the stingless bee, Melipona Scutellaris. Arch Insect Biochem Physiol. 2008;67(2):97–106. https://doi.org/10.1002/arch.20224. PubMed PMID: 18076110
Article
CAS
PubMed
Google Scholar
Everett A, Tong X, Briscoe AD, Monteiro A. Phenotypic plasticity in opsin expression in a butterfly compound eye complements sex role reversal. BMC Evol Biol. 2012;12:232. https://doi.org/10.1186/1471-2148-12-232. PubMed PMID: 23194112; PubMed Central PMCID: PMCPMC3549281
Article
PubMed
PubMed Central
Google Scholar
Sokabe T, Tominaga M. A temperature-sensitive TRP ion channel, painless, functions as a noxious heat sensor in fruit flies. Commun Integr Biol. 2009;2(2):170–3. PubMed PMID: 19513273; PubMed Central PMCID: PMCPMC2686375
Article
CAS
PubMed
PubMed Central
Google Scholar
Saenko SV, Marialva MS, Beldade P. Involvement of the conserved Hox gene Antennapedia in the development and evolution of a novel trait. EvoDevo. 2011;2:9. https://doi.org/10.1186/2041-9139-2-9. PubMed PMID: 21504568; PubMed Central PMCID: PMCPMC3108338
Article
CAS
PubMed
PubMed Central
Google Scholar
Reed RD, Serfas MS. Butterfly wing pattern evolution is associated with changes in a notch/distal-less temporal pattern formation process. Curr Biol. 2004;14(13):1159–66. https://doi.org/10.1016/j.cub.2004.06.046. PubMed PMID: 15242612
Article
CAS
PubMed
Google Scholar
Mateus AR, Marques-Pita M, Oostra V, Lafuente E, Brakefield PM, Zwaan BJ, et al. Adaptive developmental plasticity: compartmentalized responses to environmental cues and to corresponding internal signals provide phenotypic flexibility. BMC Biol. 2014;12:97. https://doi.org/10.1186/s12915-014-0097-x. PubMed PMID: 25413287; PubMed Central PMCID: PMCPMC4275937
Article
PubMed
PubMed Central
Google Scholar
Monteiro A, Tong X, Bear A, Liew SF, Bhardwaj S, Wasik BR, et al. Differential expression of Ecdysone receptor leads to variation in phenotypic plasticity across serial Homologs. PLoS Genet. 2015;11(9):e1005529. https://doi.org/10.1371/journal.pgen.1005529. PubMed PMID: 26405828; PubMed Central PMCID: PMCPMC4583414
Article
PubMed
PubMed Central
Google Scholar
Monteiro A, Prudic KM. Multiple approaches to study color pattern evolution in butterflies. Trends Evol Biol. 2010;2(1):2. https://doi.org/10.4081/eb.2010.e2.
Article
Google Scholar
Koch PB, Merk R, Reinhardt R, Weber P. Localization of ecdysone receptor protein during colour pattern formation in wings of the butterfly Precis coenia (Lepidoptera: Nymphalidae) and co-expression with distal-less protein. Dev Genes Evol. 2003;212(12):571–84. PubMed PMID: WOS:000181090600002
CAS
PubMed
Google Scholar
Tong X, Hrycaj S, Podlaha O, Popadic A, Monteiro A. Over-expression of Ultrabithorax alters embryonic body plan and wing patterns in the butterfly Bicyclus anynana. Dev Biol. 2014;394(2):357–66. https://doi.org/10.1016/j.ydbio.2014.08.020. PubMed PMID: 25169193
Article
CAS
PubMed
Google Scholar
Ozsu N, Chan QY, Chen B, Gupta MD, Monteiro A. Wingless is a positive regulator of eyespot color patterns in Bicyclus anynana butterflies. Dev Biol. 2017;429(1):177–85. https://doi.org/10.1016/j.ydbio.2017.06.030. PubMed PMID: 28668322
Article
CAS
PubMed
Google Scholar
Keys DN, Lewis DL, Goodrich LV, Selegue J, Gates J, Scott MP, et al. Butterfly eyespots and the co-option of A-P patterning genes. Dev Biol. 1997;186(2):A32–A. PubMed PMID: WOS:A1997XH77400137
Google Scholar
Tong X, Lindemann A, Monteiro A. Differential involvement of hedgehog signaling in butterfly wing and eyespot development. PLoS One 2012;7(12):e51087. doi: https://doi.org/10.1371/journal.pone.0051087. PubMed PMID: 23227236; PubMed Central PMCID: PMCPMC3515442.
Brakefield PM, Gates J, Keys D, Kesbeke F, Wijngaarden PJ, Monteiro A, et al. Development, plasticity and evolution of butterfly eyespot patterns. Nature. 1996;384(6606):236–42. https://doi.org/10.1038/384236a0. PubMed PMID: 12809139
Article
CAS
PubMed
Google Scholar
Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev. Genet. 2012;13(4):227–32. https://doi.org/10.1038/nrg3185. PubMed PMID: 22411467; PubMed Central PMCID: PMCPMC3654667
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Reed RD. Genome editing in butterflies reveals that spalt promotes and distal-less represses eyespot colour patterns. Nat Commun. 2016;7:11769. https://doi.org/10.1038/ncomms11769. PubMed PMID: 27302525
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhungel B, Ohno Y, Matayoshi R, Iwasaki M, Taira W, Adhikari K, et al. Distal-less induces elemental color patterns in Junonia butterfly wings. Zoological Lett. 2016;2:4. https://doi.org/10.1186/s40851-016-0040-9. PubMed PMID: 26937287; PubMed Central PMCID: PMCPMC4774158
Article
PubMed
PubMed Central
Google Scholar
Monteiro A, Chen B, Ramos DM, Oliver JC, Tong X, Guo M, et al. Distal-less regulates eyespot patterns and melanization in Bicyclus butterflies. J Exp Zool B Mol Dev Evol. 2013;320(5):321–31. https://doi.org/10.1002/jez.b.22503. PubMed PMID: 23633220
Article
CAS
PubMed
Google Scholar
Pflugfelder GO, Roth H, Poeck BA. Homology domain shared between drosophila optomotor-blind and mouse Brachyury is involved in DNA binding. Biochem Biophys Res Commun. 1992;186(2):918–25. PubMed PMID: 1497674
Article
CAS
PubMed
Google Scholar
Smith JT. Box genes: what they do and how they do it. Trends Genet. 1999;15(4):154–8. PubMed PMID: 10203826
Article
CAS
PubMed
Google Scholar
Cook O, Biehs B, Bier E. Brinker and optomotor-blind act coordinately to initiate development of the L5 wing vein primordium in drosophila. Development. 2004;131(9):2113–24. https://doi.org/10.1242/dev.01100. PubMed PMID: 15073155
Article
CAS
PubMed
Google Scholar
Stark J, Bonacum J, Remsen J, DeSalle R. The evolution and development of dipteran wing veins: a systematic approach. Annu Rev. Entomol. 1999;44:97–129. https://doi.org/10.1146/annurev.ento.44.1.97. PubMed PMID: 9990717
Article
CAS
PubMed
Google Scholar
Charles JP, Iwema T, Epa VC, Takaki K, Rynes J, Jindra M. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc Natl Acad Sci U S A. 2011;108(52):21128–33. https://doi.org/10.1073/pnas.1116123109. PubMed PMID: 22167806; PubMed Central PMCID: PMCPMC3248530
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubrovsky EB, Dubrovskaya VA, Bilderback AL, Berger EM. The isolation of two juvenile hormone-inducible genes in Drosophila Melanogaster. Dev Biol. 2000;224(2):486–95. https://doi.org/10.1006/dbio.2000.9800. PubMed PMID: 10926782
Article
CAS
PubMed
Google Scholar
Dobryszycki P, Kolodziejczyk R, Krowarsch D, Gapinski J, Ozyhar A, Kochman M. Unfolding and refolding of juvenile hormone binding protein. Biophys J. 2004;86(2):1138–48. https://doi.org/10.1016/S0006-3495(04)74188-0. PubMed PMID: 14747348; PubMed Central PMCID: PMCPMC1303906
Article
CAS
PubMed
PubMed Central
Google Scholar
Trowell SC. High-affinity juvenile-hormone carrier proteins in the Hemolymph of insects. Comp Biochem Phys B. 1992;103(4):795–807. PubMed PMID: WOS:A1992KC93600004
Article
Google Scholar
Nijhout HF, Grunert LW. Bombyxin is a growth factor for wing imaginal disks in Lepidoptera. Proc Natl Acad Sci U S A. 2002;99(24):15446–50. https://doi.org/10.1073/pnas.242548399. PubMed PMID: 12429853; PubMed Central PMCID: PMCPMC137736
Article
CAS
PubMed
PubMed Central
Google Scholar
Aslam AF, Kiya T, Mita K, Iwami M. Identification of novel bombyxin genes from the genome of the silkmoth Bombyx Mori and analysis of their expression. Zool Sci. 2011;28(8):609–16. https://doi.org/10.2108/zsj.28.609. PubMed PMID: 21801003
Article
CAS
PubMed
Google Scholar
Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A, Ishizaki H, et al. Amino-terminal amino acid sequence of the silkworm prothoracicotropic hormone: homology with insulin. Science. 1984;226(4680):1344–5. https://doi.org/10.1126/science.226.4680.1344. PubMed PMID: 17832633
Article
CAS
PubMed
Google Scholar
Satake S, Masumura M, Ishizaki H, Nagata K, Kataoka H, Suzuki A, et al. Bombyxin, an insulin-related peptide of insects, reduces the major storage carbohydrates in the silkworm Bombyx Mori. Comp Biochem Physiol B Biochem Mol Biol. 1997;118(2):349–57. PubMed PMID: 9440228
Article
CAS
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52. https://doi.org/10.1038/nbt.1883. PubMed PMID: 21572440; PubMed Central PMCID: PMCPMC3571712
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170. PubMed PMID: 24695404; PubMed Central PMCID: PMCPMC4103590
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512. https://doi.org/10.1038/nprot.2013.084. PubMed PMID: 23845962; PubMed Central PMCID: PMCPMC3875132
Article
CAS
PubMed
Google Scholar
Li B, Dewey CNRSEM. Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. https://doi.org/10.1186/1471-2105-12-323. PubMed PMID: 21816040; PubMed Central PMCID: PMCPMC3163565
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616. PubMed PMID: 19910308; PubMed Central PMCID: PMCPMC2796818
Article
CAS
PubMed
Google Scholar
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3) PubMed PMID: WOS:000277309100013
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6. https://doi.org/10.1093/bioinformatics/bti610. PubMed PMID: 16081474
Article
CAS
PubMed
Google Scholar