Chipman AD. Hexapoda: comparative aspects of early development. In: Evolutionary developmental biology of invertebrates, vol. 5. Vienna: Springer Vienna; 2015. p. 93–110.
Chapter
Google Scholar
Peel AD, Chipman AD, Akam M. Arthropod segmentation: beyond the Drosophila paradigm. Nat Rev Genet. 2005;6:905–16.
Article
CAS
PubMed
Google Scholar
Lynch JA, El-Sherif E, Brown SJ. Comparisons of the embryonic development of Drosophila, Nasonia and Tribolium. Wiley Interdiscip Rev Dev Biol. 2012;1:16–39.
Article
CAS
PubMed
Google Scholar
Liu PZ, Kaufman TC. Short and long germ segmentation: unanswered questions in the evolution of a developmental mode. Evol Dev. 2005;7:629–46.
Article
PubMed
Google Scholar
Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.
Article
CAS
PubMed
Google Scholar
Belles X, Cristino AS, Tanaka ED, Rubio M, Piulachs M-D. Insect MicroRNAs: from molecular mechanisms to biological roles. In: Gilbert LI, editor. Insect molecular biology and biochemistry. Amsterdam: Elsevier-Academic Press; 2012. p. 30–56.
Chapter
Google Scholar
Flynt AS, Lai EC. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet. 2008;9:831–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ebert MS, Sharp PA. Roles for MicroRNAs in conferring robustness to biological processes. Cell. 2012;149:515–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hornstein E, Shomron N. Canalization of development by microRNAs. Nat Genet. 2006;38(Suppl):S20–4.
Article
CAS
PubMed
Google Scholar
Cristino AS, Tanaka ED, Rubio M, Piulachs M-D, Belles X. Deep sequencing of organ- and stage-specific micrornas in the evolutionarily basal insect Blattella germanica (L.) (Dictyoptera, Blattellidae). PLOS One. 2011;6.
Ylla G, Fromm B, Piulachs M-D, Belles X. The microRNA toolkit of insects. Sci Rep. 2016;6:37736.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubio M, Belles X. Subtle roles of microRNAs let-7, miR-100 and miR-125 on wing morphogenesis in hemimetabolan metamorphosis. J Insect Physiol. 2013;59:1089–94.
Article
CAS
PubMed
Google Scholar
Rubio M, de Horna A, Belles X. MicroRNAs in metamorphic and non-metamorphic transitions in hemimetabolan insect metamorphosis. BMC Genomics. 2012;13:386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubio M, Montañez R, Perez L, Milan M, Belles X. Regulation of atrophin by both strands of the mir-8 precursor. Insect Biochem Mol Biol. 2013;43:1009–14.
Article
CAS
PubMed
Google Scholar
Lozano J, Montañez R, Belles X. MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway. Proc Natl Acad Sci U S A. 2015;112:3740–5.
CAS
PubMed
PubMed Central
Google Scholar
Ninova M, Ronshaugen M, Griffiths-Jones S. Conserved temporal patterns of MicroRNA expression in Drosophila support a developmental hourglass model. Genome Biol Evol. 2014;6:2459–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ninova M, Ronshaugen M, Griffiths-Jones S. MicroRNA evolution, expression, and function during short germband development in Tribolium castaneum. Genome Res. 2016;26:85–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Truman JW, Riddiford LM. The origins of insect metamorphosis. Nature. 1999;401:447–52.
Article
CAS
PubMed
Google Scholar
Belles X. Origin and evolution of insect metamorphosis. In: eLS. Chichester: John Wiley & Sons, Ltd; 2011.
Google Scholar
Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, et al. A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet. 2015;49:213–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bushati N, Stark A, Brennecke J, Cohen SM. Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr Biol. 2008;18:501–6.
Article
CAS
PubMed
Google Scholar
Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature. 2006;442:203–7.
CAS
PubMed
Google Scholar
Belles X, Santos CG. The MEKRE93 (Methoprene tolerant-Krüppel homolog 1-E93) pathway in the regulation of insect metamorphosis, and the homology of the pupal stage. Insect Biochem Mol Biol. 2014;52:60–8.
Article
CAS
PubMed
Google Scholar
Sun K, Jee D, de Navas LF, Duan H, Lai EC. Multiple in vivo biological processes are mediated by functionally redundant activities of Drosophila mir-279 and mir-996. PLoS Genet. 2015;11:e1005245.
Article
PubMed
PubMed Central
Google Scholar
Yuva-Aydemir Y, X-L X, Aydemir O, Gascon E, Sayin S, Zhou W, et al. Downregulation of the host gene jigr1 by miR-92 is essential for neuroblast self-renewal in drosophila. PLoS Genet. 2015;11:e1005264.
Article
PubMed
PubMed Central
Google Scholar
Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG. Regulation of miRNA expression during neural cell specification. Eur J Neurosci. 2005;21:1469–77.
Article
PubMed
Google Scholar
Coolen M, Bally-Cuif L. MicroRNAs in brain development and physiology. Curr Opin Neurobiol. 2009;19:461–70.
Article
CAS
PubMed
Google Scholar
Marco A, Hooks K, Griffiths-Jones S. Evolution and function of the extended miR-2 microRNA family. RNA Biol. 2012;9:242–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee GJ, Jun JW, Hyun S. MicroRNA miR-8 regulates multiple growth factor hormones produced from Drosophila fat cells. Insect Mol Biol. 2015;24:311–8.
Article
CAS
PubMed
Google Scholar
Jin H, Kim VN, Hyun S. Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila. Genes Dev. 2012;26:1427–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Esslinger SM, Schwalb B, Helfer S, Michalik KM, Witte H, Maier KC, et al. Drosophila miR-277 controls branched-chain amino acid catabolism and affects lifespan. RNA Biol. 2013;10:1042–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teleman AA, Maitra S, Cohen SM. Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev. 2006;20:417–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee M, Choi Y, Kim K, Jin H, Lim J, Nguyen TA, et al. Adenylation of maternally inherited microRNAs by wispy. Mol Cell. 2014;56:696–707.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marco A. Selection against maternal microRNA target sites in maternal transcripts. G3 (Bethesda). 2015;5:2199–207.
Article
Google Scholar
Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006;312:75–9.
Article
CAS
PubMed
Google Scholar
He J, Chen Q, Wei Y, Jiang F, Yang M, Hao S, et al. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts. Proc Natl Acad Sci U S A. 2016;113:584–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Zheng Y, Jagadeeswaran G, Ren R, Sunkar R, Jiang H. Identification and developmental profiling of conserved and novel microRNAs in Manduca sexta. Insect Biochem Mol Biol. 2012;42:381–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faunes F, Larraín J. Conservation in the involvement of heterochronic genes and hormones during developmental transitions. Dev Biol. 2016;416:3–17.
Article
CAS
PubMed
Google Scholar
Belles X. MicroRNAs and the evolution of insect metamorphosis. Annu Rev Entomol. 2017;62:111–25.
Article
CAS
PubMed
Google Scholar
Treiblmayr K, Pascual N, Piulachs M-D, Keller T, Belles X. Juvenile hormone titer versus juvenile hormone synthesis in female nymphs and adults of the German cockroach, Blattella germanica. J Insect Sci. 2006;6:1–7.
Maestro JL, Pascual N, Treiblmayr K, Lozano J, Belles X. Juvenile hormone and allatostatins in the German cockroach embryo. Insect Biochem Mol Biol. 2010;40:660–5.
Cruz J, Martín D, Pascual N, Maestro JL, Piulachs MD, Belles X. Quantity does matter. Juvenile hormone and the onset of vitellogenesis in the German cockroach. Insect Biochem Mol Biol. 2003;33:1219–25.
Piulachs M-D, Pagone V, Belles X. Key roles of the Broad-Complex gene in insect embryogenesis. Insect Biochem Mol Biol. 2010;40:468–75.
Tanaka A. Stages in the embryonic development of the German cockroach, Blattella germanica Linné (Blattaria, Blattellidae). Kontyû, Tokyo. 1976;44:1703–14.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics. 2014;30:614–20.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52.
Article
PubMed
Google Scholar
Celniker SE, Dillon LA, Gerstein MB, Gunsalus KC, Henikoff S, Karpen GH, et al. Unlocking the secrets of the genome. Nature. 2009;18:927–30.
Article
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
Article
CAS
PubMed
Google Scholar
Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–7.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
Google Scholar
Ballouz S, Verleyen W, Gillis J. Guidance for RNA-seq co-expression network construction and analysis: safety in numbers. Bioinformatics. 2015;31(13):2123–30. https://doi.org/10.1093/bioinformatics/btv118.
Article
CAS
PubMed
Google Scholar
Golub GH, Van LCF. Matrix computations. 3rd ed. Baltimore and London: The Johns Hopkins University Press; 1996.
Google Scholar
Tomfohr J, Lu J, Kepler TB. Pathway level analysis of gene expression using singular value decomposition. BMC Bioinforma. 2005;6:225.
Article
Google Scholar
Alter O, Brown PO, Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci U S A. 2000;97:10101–6.
Article
CAS
PubMed
PubMed Central
Google Scholar