Valencia EY, Chambergo FS. Mini-review: Brazilian fungi diversity for biomass degradation. Fungal Genet Biol. 2013;60:9–18.
Article
CAS
PubMed
Google Scholar
Chandel AK, Chandrasekhar G, Silva MB, Silvério da Silva S. The realm of cellulases in biorefinery development. Crit Rev Biotechnol. 2012;32(3):187–202.
Article
CAS
PubMed
Google Scholar
York WS, Darvill AG, McNeil M, Stevenson TT, Albersheim P. Isolation and characterization of plant cell walls and cell wall components. In: Methods in Enzymology. Vol. volume 118: New York: Academic Press; 1986. p. 3–40.
Samuels GJ. Trichoderma: Systematics, the sexual state, and ecology. Phytopathology. 2006;96(2):195–206.
Article
CAS
PubMed
Google Scholar
Küçük Ç, Kivanç M, Kinaci E, Kinaci G. Biological efficacy of Trichoderma harzianum isolate to control some fungal pathogens of wheat (Triticum aestivum) in Turkey. Biologia. 2007;62(3):283–6.
Article
Google Scholar
Adav SS, Chao LT, Sze SK. Quantitative Secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for Lignocellulosic biomass degradation. Mol Cell Proteomics. 2012;11(7)
Peciulyte A, Anasontzis GE, Karlström K, Larsson PT, Olsson L. Morphology and enzyme production of Trichoderma reesei rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genet Biol. 2014;72:64–72.
Article
CAS
PubMed
Google Scholar
Benoliel B, Torres FAG, de LMP M. A novel promising Trichoderma harzianum strain for the production of a cellulolytic complex using sugarcane bagasse in natura. SpringerPlus. 2013;2:656.
Article
PubMed
PubMed Central
Google Scholar
Vizoná Liberato M, Cardoso Generoso W, Malagó W, Henrique-Silva F, Polikarpov I. Crystallization and preliminary X-ray diffraction analysis of endoglucanase III from Trichoderma harzianum. Acta Crystallographica section F: structural biology and crystallization. Communications. 2012;68(Pt 3):306–9.
Google Scholar
da Silva Delabona P, Lima DJ, Robl D, Rabelo SC, Farinas CS, da Cruz Pradella JG. Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J Ind Microbiol Biotechnol. 2016;43(5):617–26.
Article
Google Scholar
de Castro AM, Pedro KCNR, da Cruz JC, Ferreira MC, Leite SGF, Pereira N. Trichoderma harzianum IOC-4038: a promising strain for the production of a Cellulolytic complex with significant β-Glucosidase activity from sugarcane Bagasse Cellulignin. Appl Biochem Biotechnol. 2010;162(7):2111–22.
Article
PubMed
Google Scholar
Perazzolli M, Moretto M, Fontana P, Ferrarini A, Velasco R, Moser C, Delledonne M, Pertot I. Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics. 2012;13(1):660.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marzano M, Gallo A, Altomare C. Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. Sp. lycopersici through UV-induced tolerance to fusaric acid. Biol Control. 2013;67(3):397–408.
Article
CAS
Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(D1):D490–5.
Article
CAS
PubMed
Google Scholar
Murphy C, Powlowski J, Wu M, Butler G, Tsang A. Curation of characterized glycoside hydrolases of fungal origin. Database (Oxford). 2011;2011:bar020.
Article
Google Scholar
Valadares F, Gonçalves TA, Gonçalves DSPO, Segato F, Romanel E, Milagres AMF, Squina FM, Ferraz A. Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification. Biotechnol Biofuels. 2016;9(1):110.
Article
PubMed
PubMed Central
Google Scholar
Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013;6(1):41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baroncelli R, Piaggeschi G, Fiorini L, Bertolini E, Zapparata A, Pè ME, Sarrocco S, Vannacci G. Draft whole-genome sequence of the biocontrol agent Trichoderma harzianum T6776. Genome Announc. 2015;3(3):e00647–15.
Article
PubMed
PubMed Central
Google Scholar
Horta MAC, Vicentini R, Delabona PS, Laborda P, Crucello A, Freitas S, Kuroshu RM, Polikarpov I, Pradella JGC, Souza AP. Transcriptome profile of Trichoderma harzianum IOC-3844 induced by sugarcane Bagasse. PLoS One. 2014;9(2):e88689.
Article
PubMed
PubMed Central
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Article
CAS
PubMed
Google Scholar
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2015;
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015;43(D1):D222–6.
Article
CAS
PubMed
Google Scholar
Mitchell A, Chang H-Y, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S, et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 2015;43(Database issue):D213–21.
Article
PubMed
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth. 2011;8(10):785–6.
Article
CAS
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80.
Article
CAS
PubMed
Google Scholar
Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300(4):1005–16.
Article
CAS
PubMed
Google Scholar
C-S Y, Lin C-J, Hwang J-K. Predicting subcellular localization of proteins for gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 2004;13(5):1402–6.
Article
Google Scholar
CLC Genomics Workbench QAAS. Manual for CLC Genomics Workbench 9.0 Windows, Mac OS X and Linux Denmark. In.; 2016.
Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13.
Article
PubMed
PubMed Central
Google Scholar
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
Google Scholar
Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8(3):275–82.
CAS
PubMed
Google Scholar
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783–91.
Article
PubMed
Google Scholar
Carvalho DDC, Geraldine AM, Lobo Junior M, Mello SCM. Biological control of white mold by Trichoderma harzianum in common bean under field conditions. Pesq Agrop Brasileira. 2015;50:1220–4.
Article
Google Scholar
Crucello A, Sforça DA, Horta MAC, dos Santos CA, AJC V, Beloti LL, de Toledo MAS, Vincentz M, Kuroshu RM, de Souza AP. Analysis of genomic regions of Trichoderma harzianum IOC-3844 related to biomass degradation. PLoS One. 2015;10(4):e0122122.
Article
PubMed
PubMed Central
Google Scholar
Santos CA, Zanphorlin LM, Crucello A, Tonoli CCC, Ruller R, Horta MAC, Murakami MT, de Souza AP. Crystal structure and biochemical characterization of the recombinant ThBgl, a GH1 β-glucosidase overexpressed in Trichoderma harzianum under biomass degradation conditions. Biotechnol Biofuels. 2016;9(1):71.
Article
PubMed
PubMed Central
Google Scholar
Manzo N, D'Apuzzo E, Coutinho PM, Cutting SM, Henrissat B, Ricca E. Carbohydrate-active enzymes from pigmented bacilli: a genomic approach to assess carbohydrate utilization and degradation. BMC Microbiol. 2011;11(1):198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berlemont R, Martiny AC. Phylogenetic distribution of potential Cellulases in bacteria. Appl Environ Microbiol. 2013;79(5):1545–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM. Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Factories. 2012;11:134.
Article
Google Scholar
Chang H-X, Yendrek CR, Caetano-Anolles G, Hartman GL. Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanses and polygalacturonases of Fusarium virguliforme. BMC Microbiol. 2016;16(1):147.
Article
PubMed
PubMed Central
Google Scholar
Benoit I, Culleton H, Zhou M, DiFalco M, Aguilar-Osorio G, Battaglia E, Bouzid O, Brouwer CPJM, El-Bushari HBO, Coutinho PM, et al. Closely related fungi employ diverse enzymatic strategies to degrade plant biomass. Biotechnol Biofuels. 2015;8(1):107.
Article
PubMed
PubMed Central
Google Scholar
Tyler L, Bragg JN, Wu J, Yang X, Tuskan GA, Vogel JP. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon. BMC Genomics. 2010;11(1):600.
Article
PubMed
PubMed Central
Google Scholar
Pinard D, Mizrachi E, Hefer CA, Kersting AR, Joubert F, Douglas CJ, Mansfield SD, Myburg AA. Comparative analysis of plant carbohydrate active enZymes and their role in xylogenesis. BMC Genomics. 2015;16(1):402.
Article
PubMed
PubMed Central
Google Scholar
Xie B-B, Qin Q-L, Shi M, Chen L-L, Shu Y-L, Luo Y, Wang X-W, Rong J-C, Gong Z-T, Li D, et al. Comparative genomics provide insights into evolution of Trichoderma nutrition style. Genome Biol Evol. 2014;6(2):379–90.
Article
PubMed
PubMed Central
Google Scholar
Jun H, Kieselbach T, Jönsson LJ. Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microb Cell Factories. 2011;10(1):68.
Article
CAS
Google Scholar
Alvira P, Gyalai-Korpos M, Barta Z, Oliva JM, Réczey K, Ballesteros M. Production and hydrolytic efficiency of enzymes from Trichoderma reesei RUTC30 using steam pretreated wheat straw as carbon source. J Chem Technol Biotechnol. 2013;88(6):1150–6.
Article
CAS
Google Scholar
Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011;12(4):R40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Limón MC, Chacón MR, Mejías R, Delgado-Jarana J, Rincón AM, Codón AC, Benítez T. Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Appl Microbiol Biotechnol. 2004;64(5):675–85.
Article
PubMed
Google Scholar
Pellegrini VOA, Serpa VI, Godoy AS, Camilo CM, Bernardes A, Rezende CA, Junior NP, Franco Cairo JPL, Squina FM, Polikarpov I. Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme. Appl Microbiol Biotechnol. 2015;99(22):9591–604.
Article
CAS
PubMed
Google Scholar
Binod P, Sukumaran RK, Shirke SV, Rajput JC, Pandey A. Evaluation of fungal culture filtrate containing chitinase as a biocontrol agent against Helicoverpa armigera. J Appl Microbiol. 2007;103(5):1845–52.
Article
CAS
PubMed
Google Scholar
Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol. 2013;127:500–7.
Article
CAS
PubMed
Google Scholar
Zhao Z, Liu H, Wang C, Xu J-R. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics. 2013;14(1):274.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nekiunaite L, Arntzen MØ, Svensson B, Vaaje-Kolstad G, Abou Hachem M. Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches. Biotechnology for Biofuels. 2016;9(1):187.
Article
PubMed
PubMed Central
Google Scholar
Das S, Dawson NL, Orengo CA. Diversity in protein domain superfamilies. Curr Opin Genet Dev. 2015;35:40–9.
Article
CAS
PubMed
PubMed Central
Google Scholar