Brown JE, McBride CS, Johnson P, Ritchie S, Paupy C, Bossin H, Lutomiah J, Fernandez-Salas I, Ponlawat A, Cornel AJ, Black WC IV, Gorrochotegui-Escalante N, Urdaneta-Marquez L, Sylla M, Slotman M, Murray KO, Walker C, Powell JR. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proc Biol Sci. 2011;278(1717):2446–54.
Article
PubMed
PubMed Central
Google Scholar
McClelland GAH. A worldwide survey of variation in scale pattern of the abdominal tergum of Aedea aegypti (L.) (Diptera:Culicidae). Trans Royal Entomol Soc Lond. 1974;126:239–59.
Article
Google Scholar
Tabachnick WJ, Powell JR. A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genet Res. 1979;34(3):215–29.
Article
CAS
PubMed
Google Scholar
Mattingly PF. Taxonomy of Aedes aegypti and related species. Bull World Health Organ. 1967;36(4):552–4.
CAS
PubMed
PubMed Central
Google Scholar
Rasic G, Filipovic I, Weeks AR, Hoffmann AA. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics. 2014;15:275.
Article
PubMed
PubMed Central
Google Scholar
Dickson LB, Sanchez-Vargas I, Sylla M, Fleming K, Black WC IV. Vector competence in West African Aedes aegypti Is Flavivirus species and genotype dependent. PLoS Negl Trop Dis. 2014;8(10):e3153.
Article
PubMed
PubMed Central
Google Scholar
Sylla M, Bosio C, Urdaneta-Marquez L, Ndiaye M, Black WC IV. Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal. PLoS Negl Trop Dis. 2009;3(4):e408.
Article
PubMed
PubMed Central
Google Scholar
Presgraves DC, Orr HA. Haldane's rule in taxa lacking a hemizygous X. Science. 1998;282(5390):952–4.
Article
CAS
PubMed
Google Scholar
Mattingly PF. Genetical aspects of the Aedes aegypti problem. I. Taxonom: and bionomics. Ann Trop Med Parasitol. 1957;51(4):392–408.
Article
CAS
PubMed
Google Scholar
McClelland GA. Sex-linkage at two loci affecting eye pigment in the mosquito Aedes aegypti (diptera: culicidae). Can J Genet Cytol. 1966;8(2):192–8.
Article
CAS
PubMed
Google Scholar
Newton ME, Southern DI, Wood RJ. X and Y chromosomes of Aedes aegypti (L.) distinguished by Giemsa C-banding. Chromosoma 1974, 49(1):41-49.
Hall AB, Basu S, Jiang X, Qi Y, Timoshevskiy VA, Biedler JK, Sharakhova MV, Elahi R, Anderson MA, Chen XG, Sharakhov IV, Adelman ZN, Tu Z. A male-determining factor in the mosquito Aedes aegypti. Science. 2015;348:1268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall AB, Timoshevskiy VA, Sharakhova MV, Jiang X, Basu S, Anderson MA, Hu W, Sharakhov IV, Adelman ZN, Tu Z. Insights into the preservation of the homomorphic sex-determining chromosome of Aedes aegypti from the discovery of a male-biased gene tightly linked to the M-locus. Genome Biol Evol. 2014;6(1):179–91.
Article
PubMed
PubMed Central
Google Scholar
Salvemini M, D'Amato R, Petrella V, Aceto S, Nimmo D, Neira M, Alphey L, Polito LC, Saccone G. The orthologue of the fruitfly sex behaviour gene fruitless in the mosquito Aedes aegypti: evolution of genomic organisation and alternative splicing. PLoS One. 2013;8(2):e48554.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salvemini M, Mauro U, Lombardo F, Milano A, Zazzaro V, Arca B, Polito LC, Saccone G. Genomic organization and splicing evolution of the doublesex gene, a drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti. BMC Evol Biol. 2011;11:41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark NL, Aagaard JE, Swanson WJ. Evolution of reproductive proteins from animals and plants. Reproduction. 2006;131(1):11–22.
Article
CAS
PubMed
Google Scholar
Coyne J, Orr HA. Speciation. Sunderland: Sinauer Associates; 2004.
Google Scholar
Swanson WJ, Vacquier VD. The rapid evolution of reproductive proteins. Nat Rev Genet. 2002;3(2):137–44.
Article
CAS
PubMed
Google Scholar
Hosken DJ, Stockley P. Sexual selection and genital evolution. Trends Ecol Evol. 2004;19(2):87–93.
Article
PubMed
Google Scholar
Krzywinska E, Kokoza V, Morris M, de la Casa-Esperon E, Raikhel AS, Krzywinski J. The sex locus is tightly linked to factors conferring sex-specific lethal effects in the mosquito Aedes aegypti. Heredity. 2016;117(6):408–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krzywinska E, Krzywinski J. Analysis of expression in the Anopheles gambiae developing testes reveals rapidly evolving lineage-specific genes in mosquitoes. BMC Genomics. 2009;10:300.
Article
PubMed
PubMed Central
Google Scholar
Haerty W, Jagadeeshan S, Kulathinal RJ, Wong A, Ravi Ram K, Sirot LK, Levesque L, Artieri CG, Wolfner MF, Civetta A, Singh RS. Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics. 2007;177(3):1321–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
CI W, Davis AW. Evolution of postmating reproductive isolation: the composite nature of Haldane's rule and its genetic bases. Am Nat. 1993;142(2):187–212.
Article
Google Scholar
Ellegren H, Parsch J. The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet. 2007;8(9):689–98.
Article
CAS
PubMed
Google Scholar
Bachtrog D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet. 2013;14(2):113–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dickson LB, Sharakhova MV, Timoshevskiy VA, Fleming KL, Caspary A, Sylla M, Black WC IV. Reproductive incompatibility involving Senegalese Aedes aegypti (L) is associated with chromosome rearrangements. PLoS Negl Trop Dis. 2016;10(4):e0004626.
Article
PubMed
PubMed Central
Google Scholar
Dickson LB, Campbell CL, Juneja P, Jiggins FM, Sylla M, Black WC IV. Exon-enriched libraries reveal large genic differences between Aedes aegypti from Senegal, West Africa, and populations outside Africa. G3. 2017;7(2):571–82.
Article
PubMed
Google Scholar
Fontaine A, Filipovic I, Fansiri T, Hoffmann AA, Cheng C, Kirkpatrick M, Rasic G, Lambrechts L. Extensive genetic differentiation between Homomorphic sex chromosomes in the mosquito vector, Aedes aegypti. Genome Biol Evol. 2017;9(9):2322–35.
Article
PubMed
Google Scholar
Juneja P, Ariani CV, Ho YS, Akorli J, Palmer WJ, Pain A, Jiggins FM. Exome and Transcriptome sequencing of Aedes aegypti identifies a locus that confers resistance to Brugia malayi and alters the immune response. PLoS Pathog. 2015;11(3):e1004765.
Article
PubMed
PubMed Central
Google Scholar
Crawford JE, Alves JM, Palmer WJ, Day JP, Sylla M, Ramasamy R, Surendran SN, Black WC IV, Pain A, Jiggins FM. Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector. BMC Biol. 2017;15(1):16.
Article
PubMed
PubMed Central
Google Scholar
Fumagalli M, Vieira FG, Korneliussen TS, Linderoth T, Huerta-Sanchez E, Albrechtsen A, Nielsen R. Quantifying population genetic differentiation from next-generation sequencing data. Genetics. 2013;195(3):979–92.
Article
PubMed
PubMed Central
Google Scholar
Haldane JS. Sex ratio and unisexual sterility in hybrid animals. J Genetics. 1922;12:101–9.
Article
Google Scholar
Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L. Natural selection has driven population differentiation in modern humans. Nat Genet. 2008;40(3):340–5.
Article
CAS
PubMed
Google Scholar
VectorBase: a home for invertebrate vectors of human pathogens (http://www.vectorbase.org/).
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I, Lander ES, Aiden AP, Aiden EL. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356(6333):92–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nene V, Wortman JR, Lawson D, Haas B, Kodira C, ZJ T, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedo P, Arsenburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, Debruyn B, Decaprio D, Eiglmeier K, Eisenstadt E, El-Dorry H, Gelbart WM, Gomes SL, Hammond M, Hannick LI, Hogan JR, Holmes MH, Jaffe D, Johnston SJ, Kennedy RC, Koo H, Kravitz S, Kriventseva EV, Kulp D, Labutti K, Lee E, Li S, Lovin DD, Mao C, Mauceli E, Menck CF, Miller JR, Montgomery P, Mori A, Nascimento AL, Naveira HF, Nusbaum C, O'Leary SB, Orvis J, Pertea M, Quesneville H, Reidenbach KR, Rogers YH, Roth CW, Schneider JR, Schatz M, Shumway M, Stanke M, Stinson EO, Tubio JM, Vanzee JP, Verjovski-Almeida S, Werner D, White O, Wyder S, Zeng Q, Zhao Q, Zhao Y, Hill CA, Raikhel AS, Soares MB, Knudson DL, Lee NH, Galagan J, Salzberg SL, Paulsen IT, Dimopoulos G, Collins FH, Bruce B, Fraser-Liggett CM, Severson DW. Genome sequence of Aedes aegypti, a major Arbovirus vector. Science. 2007;316:1718.
Article
CAS
PubMed
Google Scholar
Hickey WA, Craig GB Jr. Distortion of sex ratio in populations of Aedes aegypti. Can J Genet Cytol. 1966;8(2):260–78.
Article
CAS
PubMed
Google Scholar
Hoang KP, Teo TM, Ho TX, Le VS. Mechanisms of sex determination and transmission ratio distortion in Aedes aegypti. Parasit Vectors. 2016;9:49.
Article
PubMed
PubMed Central
Google Scholar
Wood RJ, Newton ME. Sex-ratio distortion caused by meiotic drive in mosquitoes. Am Nat. 1991;137(3):379–91.
Article
Google Scholar
Lucotte EA, Laurent R, Heyer E, Segurel L, Toupance B. Detection of allelic frequency differences between the sexes in humans: a signature of sexually antagonistic selection. Genome Biol Evol. 2016;8(5):1489–500.
Article
PubMed
PubMed Central
Google Scholar
Cheng C, Kirkpatrick M. Sex-specific selection and sex-biased gene expression in humans and flies. PLoS Genet. 2016;12(9):e1006170.
Article
PubMed
PubMed Central
Google Scholar
Coolon JD, Stevenson KR, McManus CJ, Yang B, Graveley BR, Wittkopp PJ. Molecular mechanisms and evolutionary processes contributing to accelerated divergence of gene expression on the drosophila X chromosome. Mol Biol Evol. 2015;32(10):2605–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
AegyXcel; http://exon.niaid.nih.gov/transcriptome.html#aegyxcel.
McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J, Sang R, Ignell R, Vosshall LB. Evolution of mosquito preference for humans linked to an odorant receptor. Nature. 2014;515(7526):222–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sparks JT, Bohbot JD, Dickens JC. The genetics of chemoreception in the labella and tarsi of Aedes aegypti. Insect Biochem Mol Biol. 2014;48:8–16.
Article
CAS
PubMed
Google Scholar
Dubendorfer A, Hediger M, Burghardt G, Bopp D. Musca domestica, a window on the evolution of sex-determining mechanisms in insects. Int J Dev Biol. 2002;46(1):75–9.
PubMed
Google Scholar
Franco MG, Rubini PG, Vecchi M. Sex-determinants and their distribution in various populations of Musca domestica L. of Western Europe. Genet Res. 1982;40(3):279–93.
Article
CAS
PubMed
Google Scholar
Thompson PE, Bowen JS. Interactions of differentiated primary sex factors in Chironomus Tentans. Genetics. 1972;70(3):491–3.
CAS
PubMed
PubMed Central
Google Scholar
Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72:291–336.
Article
CAS
PubMed
Google Scholar
Marinho J, Martins T, Neto M, Casares F, Pereira PS. The nucleolar protein Viriato/Nol12 is required for the growth and differentiation progression activities of the Dpp pathway during Drosophila eye development. Dev Biol. 2013;377(1):154–65.
Article
CAS
PubMed
Google Scholar
Sirot LK, Hardstone MC, Helinski ME, Ribeiro JM, Kimura M, Deewatthanawong P, Wolfner MF, Harrington LC. Towards a semen proteome of the dengue vector mosquito: protein identification and potential functions. PLoS Negl Trop Dis. 2011;5(3):e989.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charlesworth B. The evolution of chromosomal sex determination and dosage compensation. Curr Biol. 1996;6(2):149–62.
Article
CAS
PubMed
Google Scholar
Lahn BT, Pearson NM, Jegalian K. The human Y chromosome, in the light of evolution. Nat Rev Genet. 2001;2(3):207–16.
Article
CAS
PubMed
Google Scholar
Lemaitre C, Braga MD, Gautier C, Sagot MF, Tannier E, Marais GA. Footprints of inversions at present and past pseudoautosomal boundaries in human sex chromosomes. Genome Biol Evol. 2009;1:56–66.
Article
PubMed
PubMed Central
Google Scholar
Graham DH, Holmes JL, Black WC IV. Identification of quantitative trait loci affecting sex determination in the eastern treehole mosquito (Ochlerotatus triseriatus). J Hered. 2004;95(1):35–45.
Article
CAS
PubMed
Google Scholar
Christophers S. Aedes aegypti (L.), the yellow-fever mosquito; its life history, bionomics and structure. London: Cambridge University Press; 1960.
Google Scholar
Craig GB Jr, Vandehey RC, Hickey WA. Genetic variability in populations of Aedes aegypti. Bull World Health Organ. 1961;24:527–39.
PubMed
PubMed Central
Google Scholar
Newton ME, Wood RJ, Southern DI. A cytogenetic analysis of meiotic drive in the mosquito, Aedes aegypti (L.). Genetica. 1976;46(3):297–318.
Article
Google Scholar
Hickey WA, Craig GB Jr. Genetic distortion of sex ratio in a mosquito, Aedes aegypti. Genetics. 1966;53(6):1177–96.
CAS
PubMed
PubMed Central
Google Scholar
Owusu-Daaku KO, Wood RJ, Butler RD. Selected lines of Aedes aegypti with persistently distorted sex ratios. Heredity. 1997;79(Pt 4):388–93.
Article
PubMed
Google Scholar
Suguna SG, Wood RJ, Curtis CF, Whitelaw A, Kazmi SJ. Resistance to meiotic drive at the MD locus in an Indian wild population of Aedes aegypti. Genet Res. 1977;29(2):123–32.
Article
CAS
PubMed
Google Scholar
Wood RJ. Between-family variation in sex ratio in the Trinidad (T-30) strain of Aedes aegypti (L.) indicating differences in sensitivity to the meiotic drive gene MD. Genetica. 1976;46(3):345–61.
Article
Google Scholar
Mori A, Chadee DD, Graham DH, Severson DW. Reinvestigation of an endogenous meiotic drive system in the mosquito, Aedes aegypti (Diptera: Culicidae). J Med Entomol. 2004;41(6):1027–33.
Article
PubMed
Google Scholar
Craig GB Jr, Hickey WA, Vandehey RC. An inherited male-producing factor in Aedes aegypti. Science. 1960;132(3443):1887–9.
Article
PubMed
Google Scholar
Wood RJ, Ouda NA. The genetic basis of resistance and sensitivity to the meiotic drive gene D in the mosquito Aedes aegypti L. Genetica. 1987;72(1):69–79.
Article
CAS
PubMed
Google Scholar
Bosio CF, Harrington LC, Jones JW, Sithiprasasna R, Norris DE, Scott TW. Genetic structure of Aedes aegypti populations in Thailand using mitochondrial DNA. Am J Trop Med Hyg. 2005;72(4):434–42.
CAS
PubMed
Google Scholar
Huber K, Ba Y, Dia I, Mathiot C, Sall AA, Diallo M. Aedes aegypti in Senegal: genetic diversity and genetic structure of domestic and sylvatic populations. Am J Trop Med Hyg. 2008;79(2):218–29.
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2.
Article
Google Scholar
TD W, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26(7):873–81.
Article
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
Google Scholar
Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ebbert MT, Wadsworth ME, Staley LA, Hoyt KL, Pickett B, Miller J, Duce J, Alzheimer's Disease Neuroimaging I, Kauwe JS, Ridge PG. Evaluating the necessity of PCR duplicate removal from next-generation sequencing data and a comparison of approaches. BMC Bioinf. 2016;17(Suppl 7):239.
Article
Google Scholar
Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L, Egizi A, Zhao H, Caccone A, Powell JR. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution. 2014;68(2):514–25.
Article
CAS
PubMed
Google Scholar
Evans BR, Gloria-Soria A, Hou L, McBride C, Bonizzoni M, Zhao H, Powell JR. A multipurpose, high-throughput single-nucleotide polymorphism chip for the dengue and yellow fever mosquito, Aedes aegypti. G3. 2015;5(5):711–8.
Article
PubMed
PubMed Central
Google Scholar
Frascaroli E, Schrag TA, Melchinger AE. Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor Appl Genet. 2013;126(1):133–41.
Article
PubMed
Google Scholar
Seeb JE, Carvalho G, Hauser L, Naish K, Roberts S, Seeb LW. Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Mol Ecol Resour. 2011;11(Suppl 1):1–8.
Article
PubMed
Google Scholar