Plavnik I, Wax E, Sklan D, Bartov I, Hurwitz S. The response of broiler chickens and turkey poults to dietary energy supplied either by fat or carbohydrates. Poult Sci. 1997;76:1000–5.
Article
CAS
PubMed
Google Scholar
null A, Palo PE, Sell JL, et al. Poult Sci. 1996;75:1012–7.
Article
Google Scholar
Baéza E, Gondret F, Chartrin P, Le Bihan-Duval E, Berri C, Gabriel I, et al. The ability of genetically lean or fat slow-growing chickens to synthesize and store lipids is not altered by the dietary energy source. Anim Int J Anim Biosci. 2015;9:1643–52.
Article
CAS
Google Scholar
Gondret F, Louveau I, Mourot J, Duclos MJ, Lagarrigue S, Gilbert H, et al. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency. J Anim Sci. 2014;92:4865–77.
Article
CAS
PubMed
Google Scholar
Désert C, Merlot E, Zerjal T, Bed’hom B, Härtle S, Le Cam A, et al. Transcriptomes of whole blood and PBMC in chickens. Comp Biochem Physiol. 2016;20:1–9. Part D Genomics Proteomics.
Google Scholar
Mach N, Gao Y, Lemonnier G, Lecardonnel J, Oswald IP, Estellé J, et al. The peripheral blood transcriptome reflects variations in immunity traits in swine: towards the identification of biomarkers. BMC Genomics. 2013;14:894.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jung UJ, Seo YR, Ryu R, Choi M-S. Differences in metabolic biomarkers in the blood and gene expression profiles of peripheral blood mononuclear cells among normal weight, mildly obese and moderately obese subjects. Br J Nutr. 2016;116:1022–32.
Article
CAS
PubMed
Google Scholar
Leclercq B. Genetic selection of meat-type chickens for high or low abdominal fat content. In: Leanness in domestic birds: genetic, metabolic and hormonal aspects. London: Butterworths & Co. Ltd-INRA; 1988. p. 25–40.
Chapter
Google Scholar
Chartrin P, Berri C, Le Bihan-Duval E, Quentin M, Baéza E. Influence of production system (label, standard, certified) on lipid and fatty acid composition of fresh and cured-cooked chicken meat. Arch Für Geflügelkd. 2005;69:219–25.
CAS
Google Scholar
Baéza E, Jégou M, Gondret F, Lalande-Martin J, Tea I, Le Bihan-Duval E, et al. Pertinent plasma indicators of the ability of chickens to synthesize and store lipids. J Anim Sci. 2015;93:107–16.
Article
PubMed
Google Scholar
Dalrymple RH, Hamm R. A method for the extraction of glycogen and metabolites from a single muscle sample. Int J Food Sci Technol. 1973;8:439–44.
Article
CAS
Google Scholar
Désert C, Duclos MJ, Blavy P, Lecerf F, Moreews F, Klopp C, et al. Transcriptome profiling of the feeding-to-fasting transition in chicken liver. BMC Genomics. 2008;9:611.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.
Article
PubMed
PubMed Central
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
Google Scholar
Dvinge H, Bertone P. HTqPCR: high-throughput analysis and visualization of quantitative real-time PCR data in R. Bioinforma Oxf Engl. 2009;25:3325–6.
Article
CAS
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.
Article
PubMed
PubMed Central
Google Scholar
Bazin R, Ferré P. Assays of lipogenic enzymes. Methods Mol Biol Clifton NJ. 2001;155:121–7.
CAS
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.
Article
CAS
Google Scholar
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.
Article
PubMed
Google Scholar
Abdi H, Williams LJ, Valentin D. Multiple factor analysis: principal component analysis for multitable and multiblock data sets. Wiley Interdiscip Rev Comput Stat. 2013;5:149–79.
Article
Google Scholar
Beauclercq S, Hennequet-Antier C, Praud C, Godet E, Collin A, Tesseraud S, et al. Muscle transcriptome analysis reveals molecular pathways and biomarkers involved in extreme ultimate pH and meat defect occurrence in chicken. Sci Rep. 2017;7:6447.
Article
PubMed
PubMed Central
Google Scholar
Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. Analysis of the human tissue-specific expression by genome-wide integration of Transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014;13:397–406.
Article
CAS
PubMed
Google Scholar
Muret K, Klopp C, Wucher V, Esquerré D, Legeai F, Lecerf F, et al. Long noncoding RNA repertoire in chicken liver and adipose tissue. Genet Sel Evol GSE. 2017;49:6.
Article
PubMed
Google Scholar
Shimano H, Shimomura I, Hammer RE, Herz J, Goldstein JL, Brown MS, et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest. 1997;100:2115–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peet DJ, Janowski BA, Mangelsdorf DJ. The LXRs: a new class of oxysterol receptors. Curr Opin Genet Dev. 1998;8:571–5.
Article
CAS
PubMed
Google Scholar
Ducheix S, Lobaccaro JMA, Martin PG, Guillou H. Liver X receptor: an oxysterol sensor and a major player in the control of lipogenesis. Chem Phys Lipids. 2011;164:500–14.
Article
CAS
PubMed
Google Scholar
Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A. 2004;101:7281–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dentin R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie. 2005;87:81–6.
Article
CAS
PubMed
Google Scholar
Somel M, Creely H, Franz H, Mueller U, Lachmann M, Khaitovich P, et al. Human and chimpanzee gene expression differences replicated in mice fed different diets. PLoS One. 2008;3:e1504.
Article
PubMed
PubMed Central
CAS
Google Scholar
Do G-M, Oh HY, Kwon E, Cho Y, Shin S, Park H-J, et al. Long-term adaptation of global transcription and metabolism in the liver of high-fat diet-fed C57BL/6J mice. Mol Nutr Food Res. 2011;55(Suppl 2):S173–85.
Article
CAS
PubMed
Google Scholar
Amacher DE, Schomaker SJ, Boldt SE, Mirsky M. The relationship among microsomal enzyme induction, liver weight, and histological change in cynomolgus monkey toxicology studies. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2006;44:528–37.
Article
CAS
Google Scholar
Porter RE. Bacterial enteritides of poultry. Poult Sci. 1998;77:1159–65.
Article
PubMed
Google Scholar
Hilton JW, Atkinson JL. Response of rainbow trout (Salmo Gairdneri) to increased levels of available carbohydrate in practical trout diets. Br J Nutr. 1982;47:597–607.
Article
CAS
PubMed
Google Scholar
Leveille GA, Chakrabarty K. Diurnal variations in tissue glycogen and liver weight of meal-fed rats. J Nutr. 1967;93:546–54.
Article
CAS
PubMed
Google Scholar
Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B, et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet. 2000;25:87–90.
Article
CAS
PubMed
Google Scholar
Irwin DM, Tan H. Molecular evolution of the vertebrate hexokinase gene family: identification of a conserved fifth vertebrate hexokinase gene. Comp Biochem Physiol. 2008;3:96–107. Part D Genomics Proteomics.
Google Scholar
Guo C, Ludvik AE, Arlotto ME, Hayes MG, Armstrong LL, Scholtens DM, et al. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nat Commun. 2015;6:6069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sugden MC, Bulmer K, Holness MJ. Fuel-sensing mechanisms integrating lipid and carbohydrate utilization. Biochem Soc Trans. 2001;29:272–8.
Article
CAS
PubMed
Google Scholar
Jump DB, Clarke SD. Regulation of gene expression by dietary fat. Annu Rev Nutr. 1999;19:63–90.
Article
CAS
PubMed
Google Scholar
Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res. 2014;53:124–44.
Article
CAS
PubMed
Google Scholar
Jump DB. Fatty acid regulation of hepatic lipid metabolism. Curr Opin Clin Nutr Metab Care. 2011;14:115–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Assaf S, Hazard D, Pitel F, Morisson M, Alizadeh M, Gondret F, et al. Cloning of cDNA encoding the nuclear form of chicken sterol response element binding protein-2 (SREBP-2), chromosomal localization, and tissue expression of chicken SREBP-1 and -2 genes. Poult Sci. 2003;82:54–61.
Article
CAS
PubMed
Google Scholar
O’Hea EK, Leveille GA. Lipid biosynthesis and transport in the domestic chick (Gallus Domesticus). Comp Biochem Physiol. 1969;30:149–59.
Article
PubMed
Google Scholar
Moon YA, Lee JJ, Park SW, Ahn YH, Kim KS. The roles of sterol regulatory element-binding proteins in the transactivation of the rat ATP citrate-lyase promoter. J Biol Chem. 2000;275:30280–6.
Article
CAS
PubMed
Google Scholar
Sato R, Okamoto A, Inoue J, Miyamoto W, Sakai Y, Emoto N, et al. Transcriptional regulation of the ATP citrate-lyase gene by sterol regulatory element-binding proteins. J Biol Chem. 2000;275:12497–502.
Article
CAS
PubMed
Google Scholar
Magaña MM, Lin SS, Dooley KA, Osborne TF. Sterol regulation of acetyl coenzyme a carboxylase promoter requires two interdependent binding sites for sterol regulatory element binding proteins. J Lipid Res. 1997;38:1630–8.
PubMed
Google Scholar
Yin L, Zhang Y, Hillgartner FB. Sterol regulatory element-binding protein-1 interacts with the nuclear thyroid hormone receptor to enhance acetyl-CoA carboxylase-alpha transcription in hepatocytes. J Biol Chem. 2002;277:19554–65.
Article
CAS
PubMed
Google Scholar
Zhang Y, Yin L, Hillgartner FB. SREBP-1 integrates the actions of thyroid hormone, insulin, cAMP, and medium-chain fatty acids on ACCalpha transcription in hepatocytes. J Lipid Res. 2003;44:356–68.
Article
CAS
PubMed
Google Scholar
Bennett MK, Lopez JM, Sanchez HB, Osborne TF. Sterol regulation of fatty acid synthase promoter. Coordinate feedback regulation of two major lipid pathways. J Biol Chem. 1995;270:25578–83.
Article
CAS
PubMed
Google Scholar
Magaña MM, Koo SH, Towle HC, Osborne TF. Different sterol regulatory element-binding protein-1 isoforms utilize distinct co-regulatory factors to activate the promoter for fatty acid synthase. J Biol Chem. 2000;275:4726–33.
Article
PubMed
Google Scholar
Matsuzaka T, Shimano H, Yahagi N, Yoshikawa T, Amemiya-Kudo M, Hasty AH, et al. Cloning and characterization of a mammalian fatty acyl-CoA elongase as a lipogenic enzyme regulated by SREBPs. J Lipid Res. 2002;43:911–20.
CAS
PubMed
Google Scholar
Tabor DE, Kim JB, Spiegelman BM, Edwards PA. Identification of conserved cis-elements and transcription factors required for sterol-regulated transcription of stearoyl-CoA desaturase 1 and 2. J Biol Chem. 1999;274:20603–10.
Article
CAS
PubMed
Google Scholar
Hannah VC, Ou J, Luong A, Goldstein JL, Brown MS. Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J Biol Chem. 2001;276:4365–72.
Article
CAS
PubMed
Google Scholar
Ou J, Tu H, Shan B, Luk A, DeBose-Boyd RA, Bashmakov Y, et al. Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc Natl Acad Sci U S A. 2001;98:6027–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ducheix S, Montagner A, Polizzi A, Lasserre F, Marmugi A, Bertrand-Michel J, et al. Essential fatty acids deficiency promotes lipogenic gene expression and hepatic steatosis through the liver X receptor. J Hepatol. 2013;58:984–92.
Article
CAS
PubMed
Google Scholar
Dentin R, Pégorier J-P, Benhamed F, Foufelle F, Ferré P, Fauveau V, et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem. 2004;279:20314–26.
Article
CAS
PubMed
Google Scholar
Ishii S, Iizuka K, Miller BC, Uyeda K. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc Natl Acad Sci U S A. 2004;101:15597–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubuquoy C, Robichon C, Lasnier F, Langlois C, Dugail I, Foufelle F, et al. Distinct regulation of adiponutrin/PNPLA3 gene expression by the transcription factors ChREBP and SREBP1c in mouse and human hepatocytes. J Hepatol. 2011;55:145–53.
Article
CAS
PubMed
Google Scholar
Yamashita H, Takenoshita M, Sakurai M, Bruick RK, Henzel WJ, Shillinglaw W, et al. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A. 2001;98:9116–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stoeckman AK, Ma L, Towle HC. Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J Biol Chem. 2004;279:15662–9.
Article
CAS
PubMed
Google Scholar
Higashiyama H, Billin AN, Okamoto Y, Kinoshita M, Asano S. Expression profiling of peroxisome proliferator-activated receptor-delta (PPAR-delta) in mouse tissues using tissue microarray. Histochem Cell Biol. 2007;127:485–94.
Article
CAS
PubMed
Google Scholar
Tan NS, Vázquez-Carrera M, Montagner A, Sng MK, Guillou H, Wahli W. Transcriptional control of physiological and pathological processes by the nuclear receptor PPARβ/δ. Prog Lipid Res. 2016;64:98–122.
Article
CAS
PubMed
Google Scholar
Lee C-H, Olson P, Hevener A, Mehl I, Chong L-W, Olefsky JM, et al. PPARdelta regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci U S A. 2006;103:3444–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu S, Hatano B, Zhao M, Yen C-C, Kang K, Reilly SM, et al. Role of peroxisome proliferator-activated receptor {delta}/{beta} in hepatic metabolic regulation. J Biol Chem. 2011;286:1237–47.
Article
CAS
PubMed
Google Scholar
Liu S, Brown JD, Stanya KJ, Homan E, Leidl M, Inouye K, et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature. 2013;502:550–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hilberg F, Aguzzi A, Howells N, Wagner EF. C-jun is essential for normal mouse development and hepatogenesis. Nature. 1993;365:179–81.
Article
CAS
PubMed
Google Scholar
Eferl R, Ricci R, Kenner L, Zenz R, David J-P, Rath M, et al. Liver tumor development. C-Jun antagonizes the proapoptotic activity of p53. Cell. 2003;112:181–92.
Article
CAS
PubMed
Google Scholar
Guo J, Fang W, Sun L, Lu Y, Dou L, Huang X, et al. Reduced miR-200b and miR-200c expression contributes to abnormal hepatic lipid accumulation by stimulating JUN expression and activating the transcription of srebp1. Oncotarget. 2016;7:36207–19.
PubMed
PubMed Central
Google Scholar
Skiba-Cassy S, Collin A, Chartrin P, Médale F, Simon J, Duclos MJ, et al. Chicken liver and muscle carnitine palmitoyltransferase 1: nutritional regulation of messengers. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007;147:278–87.
Google Scholar
Régnier M, Polizzi A, Lippi Y, Fouché E, Michel G, Lukowicz C, et al. Insights into the role of hepatocyte PPARα activity in response to fasting. Mol Cell Endocrinol. 2017;
Petrov PD, Bonet ML, Reynés B, Oliver P, Palou A, Ribot J. Whole blood RNA as a source of transcript-based nutrition- and metabolic health-related biomarkers. PLoS One. 2016;11:e0155361.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jégou M, Gondret F, Vincent A, Tréfeu C, Gilbert H, Louveau I. Whole blood Transcriptomics is relevant to identify molecular changes in response to genetic selection for feed efficiency and nutritional status in the pig. PLoS One. 2016;11:e0146550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Travers MT, Cambot M, Kennedy HT, Lenoir GM, Barber MC, Joulin V. Asymmetric expression of transcripts derived from the shared promoter between the divergently oriented ACACA and TADA2L genes. Genomics. 2005;85:71–84.
Article
CAS
PubMed
Google Scholar
Shi X, Metges CC, Seyfert H-M. Characterization of a far upstream located promoter expressing the acetyl-CoA carboxylase-alpha in the brain of cattle. Gene. 2013;515:266–71.
Article
CAS
PubMed
Google Scholar
El Khadir-Mounier C, Le Fur N, Powell RS, Diot C, Langlois P, Mallard J, et al. Cloning and characterization of the 5′ end and promoter region of the chicken acetyl-CoA carboxylase gene. Biochem J. 1996;314(Pt 2):613–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barber MC, Price NT, Travers MT. Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim Biophys Acta. 2005;1733:1–28.
Article
CAS
PubMed
Google Scholar
Yang C-Y, Chiu L-L, Tan T-H. TRAF2-mediated Lys63-linked ubiquitination of DUSP14/MKP6 is essential for its phosphatase activity. Cell Signal. 2016;28:145–51.
Article
CAS
PubMed
Google Scholar
Huang C-Y, Tan T-H. DUSPs, to MAP kinases and beyond. Cell Biosci. 2012;2:24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagy Z, Riss A, Fujiyama S, Krebs A, Orpinell M, Jansen P, et al. The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes. Cell Mol Life Sci CMLS. 2010;67:611–28.
Article
CAS
PubMed
Google Scholar
Spedale G, Timmers HTM, Pijnappel WWMP. ATAC-king the complexity of SAGA during evolution. Genes Dev. 2012;26:527–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guelman S, Kozuka K, Mao Y, Pham V, Solloway MJ, Wang J, et al. The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol Cell Biol. 2009;29:1176–88.
Article
CAS
PubMed
Google Scholar
Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014;509:503–6.
Article
CAS
PubMed
Google Scholar
Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature. 2014;509:507–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angers M, Uldry M, Kong D, Gimble JM, Jetten AM. Mfsd2a encodes a novel major facilitator superfamily domain-containing protein highly induced in brown adipose tissue during fasting and adaptive thermogenesis. Biochem J. 2008;416:347–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berger JH, Charron MJ, Silver DL. Major facilitator superfamily domain-containing protein 2a (MFSD2A) has roles in body growth, motor function, and lipid metabolism. PLoS One. 2012;7:e50629.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chamoun Z, Vacca F, Parton RG, Gruenberg J. PNPLA3/adiponutrin functions in lipid droplet formation. Biol Cell. 2013;105:219–33.
Article
CAS
PubMed
Google Scholar
Maxfield FR, Iaea DB, Pipalia NH. Role of STARD4 and NPC1 in intracellular sterol transport. Biochem Cell Biol Biochim Biol Cell. 2016;94:499–506.
Article
CAS
Google Scholar
Freake HC, Oppenheimer JH. Stimulation of S14 mRNA and lipogenesis in brown fat by hypothyroidism, cold exposure, and cafeteria feeding: evidence supporting a general role for S14 in lipogenesis and lipogenesis in the maintenance of thermogenesis. Proc Natl Acad Sci U S A. 1987;84:3070–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jump DB, Narayan P, Towle H, Oppenheimer JH. Rapid effects of triiodothyronine on hepatic gene expression. Hybridization analysis of tissue-specific triiodothyronine regulation of mRNAS14. J Biol Chem. 1984;259:2789–97.
CAS
PubMed
Google Scholar
Jump DB, Oppenheimer JH. High basal expression and 3,5,3′-triiodothyronine regulation of messenger ribonucleic acid S14 in lipogenic tissues. Endocrinology. 1985;117:2259–66.
Article
CAS
PubMed
Google Scholar
Kinlaw WB, Schwartz HL, Towle HC, Oppenheimer JH. Opposing effects of glucagon and triiodothyronine on the hepatic levels of messenger ribonucleic acid S14 and the dependence of such effects on circadian factors. J Clin Invest. 1986;78:1091–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narayan P, Liaw CW, Towle HC. Rapid induction of a specific nuclear mRNA precursor by thyroid hormone. Proc Natl Acad Sci U S A. 1984;81:4687–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Towle HC, Mariash CN. Regulation of hepatic gene expression by lipogenic diet and thyroid hormone. Fed Proc. 1986;45:2406–11.
CAS
PubMed
Google Scholar
Zilz ND, Murray MB, Towle HC. Identification of multiple thyroid hormone response elements located far upstream from the rat S14 promoter. J Biol Chem. 1990;265:8136–43.
CAS
PubMed
Google Scholar
Breuker C, Moreau A, Lakhal L, Tamasi V, Parmentier Y, Meyer U, et al. Hepatic expression of thyroid hormone-responsive spot 14 protein is regulated by constitutive androstane receptor (NR1I3). Endocrinology. 2010;151:1653–61.
Article
CAS
PubMed
Google Scholar
Wu J, Wang C, Li S, Li S, Wang W, Li J, et al. Thyroid hormone-responsive SPOT 14 homolog promotes hepatic lipogenesis, and its expression is regulated by liver X receptor α through a sterol regulatory element-binding protein 1c-dependent mechanism in mice. Hepatol. Baltim. Md. 2013;58:617–28.
Article
CAS
Google Scholar
Zanetti G, Pahuja KB, Studer S, Shim S, Schekman R. COPII and the regulation of protein sorting in mammals. Nat Cell Biol. 2011;14:20–8.
Article
PubMed
CAS
Google Scholar
Han J, Li E, Chen L, Zhang Y, Wei F, Liu J, et al. The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1. Nature. 2015;524:243–6.
Article
CAS
PubMed
Google Scholar
Nagy Z, Tora L. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene. 2007;26:5341–57.
Article
CAS
PubMed
Google Scholar
Qiao A, Liang J, Ke Y, Li C, Cui Y, Shen L, et al. Mouse patatin-like phospholipase domain-containing 3 influences systemic lipid and glucose homeostasis. Hepatol Baltim Md. 2011;54:509–21.
Article
CAS
Google Scholar
Joseph SB, Laffitte BA, Patel PH, Watson MA, Matsukuma KE, Walczak R, et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem. 2002;277:11019–25.
Article
CAS
PubMed
Google Scholar
Demeure O, Duby C, Desert C, Assaf S, Hazard D, Guillou H, et al. Liver X receptor alpha regulates fatty acid synthase expression in chicken. Poult Sci. 2009;88:2628–35.
Article
CAS
PubMed
Google Scholar
Chu K, Miyazaki M, Man WC, Ntambi JM. Stearoyl-coenzyme a desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation. Mol Cell Biol. 2006;26:6786–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cha J-Y, Repa JJ. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem. 2007;282:743–51.
Article
CAS
PubMed
Google Scholar
Foster DW. Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J Clin Invest. 2012;122:1958–9.
Article
CAS
PubMed
PubMed Central
Google Scholar