Souza GM, Victoria RL, Joly CA, Verdade, LM. Bioenergy & Sustainability: bridging the gaps. 2015. http://bioenfapesp.org/scopebioenergy/index.php.
Google Scholar
Cheng JJ, Timilsina GR. Status and barriers of advanced biofuel technologies: a review. Renew En. 2011;36:3541–9.
Article
CAS
Google Scholar
Moysés DN, Reis VC, de Almeida JR, de Moraes LM, Torres FA. Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. J Mol Sci. 2016;17:207.
Article
Google Scholar
Borin GP, Sanchez CC, de Souza AP, de Santana ES, de Souza AT, Leme AFP, et al. Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass. PLoS One. 2015;10(6):e0129275.
Article
PubMed
PubMed Central
Google Scholar
Novacana. http://www.novacana.com (2016) Accessed 20 Nov 2016.
Conab. http://www.conab.gov.br (2017) Accessed 10 Nov 2017.
Milanez AY, Nyko D, Valente MS, de Sousa LC, Bonomi A, de Jesus CDF, et al. De promessa a realidade: como o etanol celulósico pode revolucionar a indústria da cana-de-açúcar: uma avaliação do potencial competitivo e sugestões de política pública. BNDES Setorial, Rio de Janeiro. 2015;41:237–94. https://web.bndes.gov.br/bib/jspui/handle/1408/4283
Google Scholar
Batalha LAR, Han Q, Jameel H, Chang H, Colodette JL, Gomes FJB. Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining. Bioresour Technol. 2015;180:97–105.
Article
CAS
PubMed
Google Scholar
Pereira SC, Maehara L, Machado CM, Farinas CS. 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnol Biofuels. 2015;8:44–60.
Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass - an overview. Bioresour Technol. 2016;199:76–82.
Article
CAS
PubMed
Google Scholar
Sambusiti C, Licari A, Solhy A, Aboulkas A, Cacciaguerra T, Barakat A. One-pot dry chemo-mechanical deconstruction for bioethanol production from sugarcane bagasse. Bioresour Technol. 2015;181:200–6.
Article
CAS
PubMed
Google Scholar
Glass NL, Schmoll M, Cate JHD, Coradetti S. Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol. 2013;67:477–98.
Article
CAS
PubMed
Google Scholar
Wang Y, Fan C, Hu H, Li Y, Sun D, Wang Y, Peng L. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv. 2016;34:997–1017.
Article
CAS
PubMed
Google Scholar
Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83:1–11.
Article
CAS
PubMed
Google Scholar
Behera S, Arora R, Nandhagopal N, Kumar S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sustain En Rev. 2014;36:91–106.
Article
CAS
Google Scholar
Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, et al. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol. 2015;29:108–19.
Article
CAS
PubMed
Google Scholar
Sharma RK, Arora DS. Fungal degradation of lignocellulosic residues: an aspect of improved nutritive quality. Crit Rev Microbiol. 2015;41(1):52–60.
Article
CAS
PubMed
Google Scholar
Borin GP, Sanchez CC, Santana ES, Zanini GK, dos Santos RAC, Pontes AO, et al. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genomics. 2017;18(1):501.
Article
PubMed
PubMed Central
Google Scholar
Damasio AR, Rubio MV, Gonçalves TA, Persinoti GF, Segato F, Prade RA, et al. Xyloglucan breakdown by endo-xyloglucanase family 74 from Aspergillus fumigatus. Appl Microbiol Biotechnol. 2017;101:2893–903.
Article
CAS
PubMed
Google Scholar
Culleton H, McKie V, de Vries RP. Physiological and molecular aspects of degradation of plant polysaccharides by fungi: what have we learned from Aspergillus? Biotechnol J. 2013;8:884–94.
Article
CAS
PubMed
Google Scholar
van den Brink J, de Vries RP. Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol. 2011;91(6):1477–92.
Article
PubMed
PubMed Central
Google Scholar
Sharma GP, Ouyang H, Wang Q, Luo Y, Shi B, Yang J, et al. Insight into enzymatic degradation of corn, wheat, and soybean cell wall cellulose using quantitative secretome analysis of Aspergillus fumigatus. J Proteome Res. 2016;15(12):4387–402.
Article
Google Scholar
Adav SS, Ravindran A, Sze SK. Quantitative proteomic study of aspergillus fumigatus secretome revealed deamidation of secretory enzymes. J Proteome. 2015;119:154–68.
Article
CAS
Google Scholar
Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y, et al. Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. Biotechnol Biofuels. 2013;6(1):149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miao Y, Liu D, Li G, Li P, Xu Y, Shen Q, Zhang R. Genome-wide transcriptomic analysis of a superior biomass-degrading strain of a. Fumigatus revealed active lignocellulose-degrading genes. BMC Genomics. 2015;16:459.
Article
PubMed
PubMed Central
Google Scholar
Amore A, Giacobbe S, Faraco V. Regulation of cellulase and hemicellulase gene expression in fungi. Curr Gen. 2013;14:230–49.
Article
CAS
Google Scholar
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–8.
Article
CAS
Google Scholar
Andrew S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28(24):3211–7.
Article
CAS
PubMed
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.
Article
PubMed
PubMed Central
Google Scholar
Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, et al. The aspergillus genome database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res. 2014;42(1):D705–10.
Article
CAS
PubMed
Google Scholar
Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 2005;438:1151–6.
Article
CAS
PubMed
Google Scholar
Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28(16):2184–5.
Article
CAS
PubMed
Google Scholar
Liao Y, Smyth GK, Shi W. The subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41(10):e108.
Article
PubMed
PubMed Central
Google Scholar
R Development Core Team. R: a language and environment for statistical computing. http://www.R-project.org/ (2015).
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.
Article
PubMed
PubMed Central
Google Scholar
Glueck DH, Mandel J, Karimpour-Fard A, Hunter L, Keith E. Exact calculations of average power for the Benjamini-Hochberg procedure. Int J Biostat. 2008;4(1):11.
Article
PubMed
PubMed Central
Google Scholar
Hammond JBW, Kruger NJ. The Bradford method for protein quantitation. In: Walker JM, editor. New protein techniques. Methods in molecular biology™, vol 3: Humana Press; 1988.
Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci. 1996;93:14440–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pundir S, Martin MJ, O’Donovan C, UniProt Consortium. UniProt tools. Curr Protoc Bioinformatics. 2016;53:1.29–1-15. www.uniprot.org. Accessed 10 Dec 2015.
Briesemeister S, Rahnenführer J, Kohlbacher O. Going from where to why--interpretable prediction of protein subcellular localization. Bioinformatics. 2010;26(9):1232–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat methods. 2011;8(10):785–6.
Bendtsen JD, Jensen LJ, Blom N, von Heijne G, Brunak S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel. 2004;17(4):349–56.
Article
CAS
PubMed
Google Scholar
Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, et al. HMMER web server: 2015 update. Nucleic Acids Res. 2015;43(W1):W30–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin Y, Mao X, Yang JC, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Semighini CP, Marins M, Goldman MHS, Goldman GH. Quantitative analysis of the relative transcript levels of ABC transporter Atr genes in Aspergillus nidulans by real-time reverse transcription-PCR assay. Appl Environ Microbiol. 2002;68(3):1351–7.
Article
CAS
PubMed
Google Scholar
Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, et al. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res. 2004;32:5539–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inglis DO, Binkley J, Skrzypek MS, Arnaud MB, Cerqueira GC, Shah P, Wymore F, Wortman JR, Sherlock G. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol. 2013;13:91.
Article
CAS
PubMed
PubMed Central
Google Scholar
BioInforx. http://bioinforx.com/free/bxarrays/venndiagram.php Accessed 10 July 2016.
Carbohydrate Active Enzymes Database. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014;42:D490–D495. http://www.cazy.org Accessed 26 Mar 2016.
Percival YHZ, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv. 2006;24:452–81.
Article
Google Scholar
Colabardini AC, Ries LN, Brown NA, Dos Reis TF, Savoldi M, Goldman MH, et al. Functional characterization of a xylose transporter in Aspergillus nidulans. Biotechnol Biofuels. 2014;7(1):46.
Article
PubMed
PubMed Central
Google Scholar
de Souza WR, de Gouvea PF, Savoldi M, Malavazi I, Bernardes LAS, Goldman MH, et al. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnol Biofuels. 2011;4:40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer V, Arentshorst M, Flitter SJ, Nitsche BM, Kwon MJ, Reynaga-Peña CG, et al. Reconstruction of signaling networks regulating fungal morphogenesis by transcriptomics. Eukaryot Cell. 2009;8(11):1677–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewis DA, Bisson LF. The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Mol Cell Biol. 1991;11(7):3804–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan J, Chaturvedi V, Shen SH. Identification and phylogenetic analysis of a glucose transporter gene family from the human pathogenic yeast Candida albicans. J Mol Evol. 2002;55(3):336–46.
Article
CAS
PubMed
Google Scholar
Pengli C, Ruimeng G, Bang W, Jingen L, Li W, Chaoguang T, Yanhe M. Evidence of a critical role for cellodextrin transporter 2 (CDT-2) in both cellulose and hemicellulose degradation and utilization in Neurospora crassa. PLoS One. 2014;9(2):e89330.
Article
Google Scholar
Tamano K, Sano M, Yamane N, Terabayashi Y, Toda T, Sunagawa M, et al. Transcriptional regulation of genes on the non-syntenic blocks of Aspergillus oryzae and its functional relationship to solid-state cultivation. Fungal Genet Biol. 2008;45(2):139–51.
Article
CAS
PubMed
Google Scholar
Wei H, Vienken K, Weber R, Bunting S, Requena N, Fischer R. A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation. Fungal Genet Biol. 2004;41(2):148–56.
Article
CAS
PubMed
Google Scholar
Kwon MJ, Jørgensen TR, Nitsche BM, Arentshorst M, Park J, Ram AF, Meyer V. The transcriptomic fingerprint of glucoamylase over-expression in Aspergillus niger. BMC Genomics. 2012;13:701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jørgensen TR, Goosen T, Hondel CA, Ram AF, Iversen JJ. Transcriptomic comparison of Aspergillus niger growing on two different sugars reveals coordinated regulation of the secretory pathway. BMC Genomics. 2009;10:44.
Article
PubMed
PubMed Central
Google Scholar
Guillemette T, van Peij N, Goosen T, Lanthaler K, Robson GD, van den Hondel CA, et al. Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger. BMC Genomics. 2007;8:158.
Article
PubMed
PubMed Central
Google Scholar
Noguchi Y, Sano M, Kanamaru K, Ko T, Takeuchi M, Kato M, Kobayashi T. Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae. Appl Microbiol Biotechnol. 2009;85(1):141–54.
Article
CAS
PubMed
Google Scholar
Andersen MR, Nielsen J. Current status of systems biology in aspergilli. Fungal Genet Biol. 2009; https://doi.org/10.1016/j.fgb.2008.07.006.
Sá-Pessoa J, Amillis S, Casal M, Diallinas G. Expression and specificity profile of the major acetate transporter AcpA in Aspergillus nidulans. Fungal Genet Biol. 2015;76:93–103.
Article
PubMed
Google Scholar
Salazar M, Vongsangnak W, Panagiotou G, Andersen MR, Nielsen J. Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data analysis. Mol Gen Genomics. 2009;282(6):571–86.
Article
CAS
Google Scholar
Fekete E, Karaffa L, Seiboth B, Fekete E, Kubicek CP, Flipphi M. Identification of a permease gene involved in lactose utilisation in Aspergillus nidulans. Fungal Genet Biol. 2012;49(6):415–25.
Article
CAS
PubMed
Google Scholar
Lima MS, Damasio AR, Crnkovic PM, Pinto MR, da Silva AM, da Silva JC, et al. Co-cultivation of Aspergillus nidulans recombinant strains produces an enzymatic cocktail as alternative to alkaline sugarcane bagasse pretreatment. Front Microbiol. 2016;7:583.
Article
PubMed
PubMed Central
Google Scholar
Buckeridge MS. Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation. Plant Physiol. 2010;154:1017–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farzad S, Mandegari MA, Guo M, Haigh KF, Shah N, Görgens JF. Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry? Biotechnol Biofuels. 2017;10:87.
Article
PubMed
PubMed Central
Google Scholar
Calderan-Rodrigues MJ, Jamet E, Douché T, Bonassi MB, Cataldi TR, Fonseca JG, et al. Cell wall proteome of sugarcane stems: comparison of a destructive and a non-destructive extraction method showed differences in glycoside hydrolases and peroxidases. BMC Plant Biol. 2016;16:14.
Article
PubMed
PubMed Central
Google Scholar
Buckeridge MS, de Souza AP. Breaking the “Glycomic code” of cell wall polysaccharides may improve second-generation bioenergy production from biomass. Bioenergy Res. 2014;7(4):1065–73.
Article
CAS
Google Scholar
Ribeiro DA, Cota J, Alvarez TM, Bruchli F, Bragato J, Pereira BM, et al. The Penicillium echinulatum secretome on sugar cane bagasse. PLoS One. 2012;7:e50571.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saykhedkar S, Ray A, Ayoubi-Canaan P, Hartson SD, Prade RA, Mort AJ. A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum Stover. Biotechnol Biofuels. 2012;5(1):52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benoit I, Culleton H, Zhou M, DiFalco M, Aguilar-Osorio G, Battaglia E, et al. Closely related fungi employ diverse enzymatic strategies to degrade plant biomass. Biotechnol Biofuels. 2015;8:107.
Article
PubMed
PubMed Central
Google Scholar
Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature. 2003;422:859–68.
Article
CAS
PubMed
Google Scholar
Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005;438:1157–61.
Article
PubMed
Google Scholar
Pel HJ, De Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol. 2007;25:221–31.
Article
PubMed
Google Scholar
Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol. 2008;26(5):553–60.
Article
CAS
PubMed
Google Scholar
Pontercorvo G, Roper JA, Hemmons LM, Macdonald KD, Bufton AWJ. The genetics of Aspergillus nidulans. Adv Genet. 1953;5:141–238.
Google Scholar
Vicentini R, Bottcher A, Brito MS, Dos Santos AB, Creste S, Landell G, et al. Large-scale transcriptome analysis of two sugarcane genotypes contrasting for lignin content. PLoS One. 2015;10(8):e0134909. Erratum in: PLoS One. 2015;10(9):e0137698
Article
PubMed
PubMed Central
Google Scholar
Horta MA, Vicentini R, Delabona PS, Laborda P, Crucello A, Freitas S, et al. Transcriptome profile of Trichoderma harzianum IOC-3844 induced by sugarcane bagasse. PLoS One. 2014;9(2):e88689.
Article
PubMed
PubMed Central
Google Scholar
Segato F, Damasio AR, de Lucas RC, Squina FM, Prade RA. Genomics review of holocellulose deconstruction by Aspergilli. Microbiol Mol Biol Rev. 2014;78:588–613.
Article
PubMed
PubMed Central
Google Scholar
Montanier C, van Bueren AL, Dumon C, Flint JE, Correia MA, Prates JA, et al. Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proc Natl Acad Sci U S A. 2009;106(9):3065–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dos Reis TF, de Lima PB, Parachin NS, Mingossi FB, Oliveira JVC, Ries LN, Goldman GH. Identification and characterization of putative xylose and cellobiose transporters in Aspergillus nidulans. Biotechnol Biofuels. 2016;9:204.
Article
PubMed
PubMed Central
Google Scholar
Turner TL, Kim H, Kong II, Liu JJ, Zhang GC, Jin YS. Engineering and evolution of Saccharomyces cerevisiae to produce biofuels and chemicals. Adv Biochem Eng Biotechnol. 2016; https://doi.org/10.1007/10_2016_22.
Zhang J, Zhang B, Wang D, Gao X, Hong J. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Bioresour Technol. 2015;175:642–5.
Article
CAS
PubMed
Google Scholar
Zhang W, Yi ZL, Huang JF, Li FC, Hao B, Li M, et al. Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresour Technol. 2013;130:30–7.
Article
CAS
PubMed
Google Scholar
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, et al. Fungal cellulases. Chem Rev. 2015;115:1308–448.
Article
CAS
PubMed
Google Scholar
Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, et al. Plant cell walls to ethanol. Biochem J. 2012;442:241–52.
Article
CAS
PubMed
Google Scholar
Ferreira ME, Colombo AL, Paulsen I, Ren Q, Wortman J, Huang J, et al. The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Med Mycol. 2005;43(Suppl 1):S313–9.
Article
PubMed
Google Scholar
Hou J, Qiu C, Shen Y, Li H, Bao X. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. FEMS Yeast Res. 2017;17:fox034.
Berrin JG, Rosso MN, Abou HM. Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases. Carbohydr Res. 2017;448:155–60.
Article
CAS
PubMed
Google Scholar
Monclaro AV, Filho EXF. Fungal lytic polysaccharide monooxygenases from family AA9: recent developments and application in lignocelullose breakdown. Int J Biol Macromol. 2017;102:771–8.
Article
CAS
PubMed
Google Scholar
Dos Santos HB, Bezerra TMS, Pradella JGC, Delabona P, Lima D, Gomes E, et al. Myceliophthora thermophila M77 utilizes hydrolytic and oxidative mechanisms to deconstruct biomass. AMB Express. 2016;6(1):103.
Article
PubMed
PubMed Central
Google Scholar
Marx IJ, van Wyk N, Smit S, Jacobson D, Viljoen-Bloom M, Volschenk H. Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei rut C30 during solid-state fermentation on sugarcane bagasse. Biotech Biofuels. 2013;6(1):172.
Article
Google Scholar
Herpoël-Gimbert I, Margeot A, Dolla A, Jan G, Mollé D, Lignon S, et al. Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotech Biofuels. 2008;1:18.
Article
Google Scholar