Brito LF, Barth AD, Rawlings NC, Wilde RE, Crews DH Jr, Boisclair YR, Ehrhardt RA, Kastelic JP. Effect of feed restriction during calfhood on serum concentrations of metabolic hormones, gonadotropins, testosterone, and on sexual development in bulls. Reproduction. 2007;134(1):171–81.
Article
CAS
PubMed
Google Scholar
Dance A, Thundathil J, Wilde R, Blondin P, Kastelic J. Enhanced early-life nutrition promotes hormone production and reproductive development in Holstein bulls. J Dairy Sci. 2015;98(2):987–98.
Article
CAS
PubMed
Google Scholar
Byrne CJ, Fair S, English AM, Urh C, Sauerwein H, Crowe MA, Lonergan P, Kenny DA. Plane of nutrition before and after 6 months of age in Holstein-Friesian bulls: II. Effects on metabolic and reproductive endocrinology and identification of physiological markers of puberty and sexual maturation. J Dairy Sci. 2018;101(4):3460–75.
Article
CAS
PubMed
Google Scholar
Rawlings N, Evans AC, Chandolia RK, Bagu ET. Sexual maturation in the bull. Reprod Domest Anim. 2008;43(Suppl 2):295–301.
Article
PubMed
Google Scholar
Jin W, Olson EN, Moore SS, Basarab JA, Basu U, Guan LL. Transcriptome analysis of subcutaneous adipose tissues in beef cattle using 3′ digital gene expression-tag profiling. J Anim Sci. 2012;90(1):171–83.
Article
CAS
PubMed
Google Scholar
Romao JM, He ML, McAllister TA, Guan LL. Effect of age on bovine subcutaneous fat proteome: molecular mechanisms of physiological variations during beef cattle growth. J Anim Sci. 2014;92(8):3316–27.
Article
CAS
PubMed
Google Scholar
Graugnard DE, Berger LL, Faulkner DB, Loor JJ. High-starch diets induce precocious adipogenic gene network up-regulation in longissimus lumborum of early-weaned Angus cattle. Brit J Nutr. 2010;103(7):953–63.
Article
CAS
PubMed
Google Scholar
Wang YH, Bower NI, Reverter A, Tan SH, De Jager N, Wang R, McWilliam SM, Cafe LM, Greenwood PL, Lehnert SA. Gene expression patterns during intramuscular fat development in cattle. J Anim Sci. 2009;87(1):119–30.
Article
CAS
PubMed
Google Scholar
Landry D, Cloutier F, Martin LJ. Implications of leptin in neuroendocrine regulation of male reproduction. Reprod Bio. 2013;13(1):1–14.
Article
Google Scholar
Sanchez-Garrido MA, Tena-Sempere M. Metabolic control of puberty: roles of leptin and kisspeptins. Hormones Behav. 2013;64(2):187–94.
Article
CAS
Google Scholar
Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahima RS, Saper CB, Flier JS, Elmquist JK. Leptin regulation of neuroendocrine systems. Front Neuroendocrinol. 2000;21(3):263–307.
Article
CAS
PubMed
Google Scholar
Quennell JH, Mulligan AC, Tups A, Liu X, Phipps SJ, Kemp CJ, Herbison AE, Grattan DR, Anderson GM. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology. 2009;150(6):2805–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurones are direct targets for leptin in the Ob/Ob mouse. J Neuroendocrinol. 2006;18(4):298–303.
Article
CAS
PubMed
Google Scholar
Tabandeh MR, Hosseini A, Sarkoohi P, Seifi S. Changes in the gene expression of adiponectin and adiponectin receptors (AdipoR1 and AdipoR2) in pituitary and hypothalamus during the estrous cycle and pregnancy. Clin Biochem. 2011;44(13):S303.
Google Scholar
Aksglaede L, Juul A, Olsen LW, Sørensen TI. Age at puberty and the emerging obesity epidemic. PLoS One. 2009;4(12):e8450.
Article
PubMed
PubMed Central
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14.
Article
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hausman GJ, Dodson MV, Ajuwon K, Azain M, Barnes KM, Guan LL, Jiang Z, Poulos SP, Sainz RD, Smith S, et al. Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J Anim Sci. 2009;87(4):1218–46.
Article
CAS
PubMed
Google Scholar
Loor JJ. Transcriptomics of muscle and fat development in growing cattle. In: Crovetto GM, editor. Energy and protein metabolism and nutrition. Wageningen: Wageningen Academic Publishers; 2010. p. 59–68.
Google Scholar
Hurtado del Pozo C, Vesperinas-García G, Rubio M-Á, Corripio-Sánchez R, Torres-García AJ, Obregon M-J, Calvo RM. ChREBP expression in the liver, adipose tissue and differentiated preadipocytes in human obesity. BBA-Mol Cell Bio L. 2011;1811(12):1194–200.
CAS
Google Scholar
He Z, Jiang T, Wang Z, Levi M, Li J. Modulation of carbohydrate response element-binding protein gene expression in 3T3-L1 adipocytes and rat adipose tissue. Am J Physiol Endoc M. 2004;287(3):424–30.
Google Scholar
Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Bio. 2006;7(2):85–96.
Article
CAS
Google Scholar
Cheng Z, Tseng Y, White MF. Insulin signaling meets mitochondria in metabolism. Trends Endocrin Meta. 2010;21(10):589–98.
Article
CAS
Google Scholar
Dong XY, Tang SQ. Insulin-induced gene: a new regulator in lipid metabolism. Peptides. 2010;31(11):2145–50.
Article
CAS
PubMed
Google Scholar
Li J, Takaishi K, Cook W, McCorkle SK, Unger RH. Insig-1 "brakes" lipogenesis in adipocytes and inhibits differentiation of preadipocytes. Proc Natl Acad Sci U S A. 2003;100(16):9476–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ambele MA, Dessels C, Durandt C, Pepper MS. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation. Stem Cell Res. 2016;16(3):725–34.
Article
CAS
PubMed
Google Scholar
Ullah M, Stich S, Haupl T, Eucker J, Sittinger M, Ringe J. Reverse differentiation as a gene filtering tool in genome expression profiling of adipogenesis for fat marker gene selection and their analysis. PLoS One. 2013;8(7):e69754.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obregon M-J. Thyroid hormone and adipocyte differentiation. Thyroid. 2008;18(2):185–95.
Article
CAS
PubMed
Google Scholar
Wakil SJ. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry. 1989;28(11):4523–30.
Article
CAS
PubMed
Google Scholar
Lkhagvadorj S, Qu L, Cai W, Couture OP, Barb CR, Hausman GJ, Nettleton D, Anderson LL, Dekkers JC, Tuggle CK. Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency. Am J Physiol Reg Integrat Comp Physiol. 2010;298(2):R494–507.
Article
CAS
Google Scholar
Keogh K, Kenny DA, Cormican P, McCabe MS, Kelly AK, Waters SM. Effect of dietary restriction and subsequent re-alimentation on the transcriptional profile of bovine skeletal muscle. PLoS One. 2016;11(2):e0149373.
Article
PubMed
PubMed Central
Google Scholar
Suzuki R, Tobe K, Aoyama M, Sakamoto K, Ohsugi M, Kamei N, Nemoto S, Inoue A, Ito Y, Uchida S, et al. Expression of DGAT2 in white adipose tissue is regulated by central leptin action. J Biol Chem. 2005;280(5):3331–7.
Article
CAS
PubMed
Google Scholar
Tong Q, Dalgin G, Xu H, Ting CN, Leiden JM, Hotamisligil GS. Function of GATA transcription factors in preadipocyte-adipocyte transition. Science. 2000;290(5489):134–8.
Article
CAS
PubMed
Google Scholar
Kim JB, Sarraf P, Wright M, Yao KM, Mueller E, Solanes G, Lowell BB, Spiegelman BM. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest. 1998;101(1):1–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barr VA, Malide D, Zarnowski MJ, Taylor SI, Cushman SW. Insulin stimulates both leptin secretion and production by rat white adipose tissue. Endocrinology. 1997;138(10):4463–72.
Article
CAS
PubMed
Google Scholar
Ehrhardt R, Slepetis R, Siegal-Willott J, Van Amburgh M, Bell A, Boisclair Y. Development of a specific radioimmunoassay to measure physiological changes of circulating leptin in cattle and sheep. J Endocrinol. 2000;166(3):519–28.
Article
CAS
PubMed
Google Scholar
Vailati-Riboni M, Kanwal M, Bulgari O, Meier S, Priest NV, Burke CR, Kay JK, McDougall S, Mitchell MD, Walker CG, et al. Body condition score and plane of nutrition prepartum affect adipose tissue transcriptome regulators of metabolism and inflammation in grazing dairy cows during the transition period. J Dairy Sci. 2016;99(1):758–70.
Article
CAS
PubMed
Google Scholar
Byrne CJ, Fair S, English AM, Urh C, Sauerwein H, Crowe MA, Lonergan P, Kenny DA. Effect of breed, plane of nutrition and age on growth, scrotal development, metabolite concentrations and on systemic gonadotropin and testosterone concentrations following a GnRH challenge in young dairy bulls. Theriogenology. 2017;96:58–68.
Article
CAS
PubMed
Google Scholar
Tena-Sempere M. Roles of ghrelin and leptin in the control of reproductive function. Neuroendocrinology. 2007;86(3):229–41.
Article
CAS
PubMed
Google Scholar
Tena-Sempere M, Pinilla L, Gonzalez LC, Dieguez C, Casanueva FF, Aguilar E. Leptin inhibits testosterone secretion from adult rat testis in vitro. J Endocrinol. 1999;161(2):211–8.
Article
CAS
PubMed
Google Scholar
Corpéchot C, Baulieu E-E, Robel P. Testosterone, dihydrotestosterone and androstanediols in plasma, testes and prostates of rats during development. Acta Endocrinol-COP. 1981;96(1):127–35.
Google Scholar
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116(7):1784–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahima RS, Lazar MA. Adipokines and the peripheral and neural control of energy balance. Mol Endocrinol. 2008;22(5):1023–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316(2):129–39.
Article
CAS
PubMed
Google Scholar
Hammes TO, Costa Cdos S, Rohden F, Margis R, de Almeida JC, Padoin AV, Mottin CC, Guaragna RM. Parallel down-regulation of FOXO1, PPARgamma and adiponectin mRNA expression in visceral adipose tissue of class III obese individuals. Obesity Facts. 2012;5(3):452–9.
Article
PubMed
Google Scholar
Steinberg GR, Kemp BE. Adiponectin: starving for attention. Cell Metab. 2007;6(1):3–4.
Article
CAS
PubMed
Google Scholar
Landry D, Paré A, Jean S, Martin LJ. Adiponectin influences progesterone production from MA-10 Leydig cells in a dose-dependent manner. Endocrine. 2015;48(3):957–67.
Article
CAS
PubMed
Google Scholar
Lu M, Tang Q, Olefsky JM, Mellon PL, Webster NJG. Adiponectin activates adenosine monophosphate-activated protein kinase and decreases luteinizing hormone secretion in LβT2 Gonadotropes. Mol Endocrinol. 2008;22(3):760–71.
Article
CAS
PubMed
Google Scholar
Sabin MA, Holly JMP, Shield JPH, Turner SJ, Grohmann MJ, Stewart CEH, Crowne EC. Mature subcutaneous and visceral adipocyte concentrations of adiponectin are highly correlated in Prepubertal children and inversely related to body mass index standard deviation score. J Clin Endocrin Metab. 2006;91(1):332–5.
Article
CAS
Google Scholar
Lemor A, Hosseini A, Sauerwein H, Mielenz M. Transition period-related changes in the abundance of the mRNAs of adiponectin and its receptors, of visfatin, and of fatty acid binding receptors in adipose tissue of high-yielding dairy cows. Domest Anim Endocrinol. 2009;37(1):37–44.
Article
CAS
PubMed
Google Scholar
Bjursell M, Ahnmark A, Bohlooly-Y M, William-Olsson L, Rhedin M, Peng X-R, Ploj K, Gerdin A-K, Arnerup G, Elmgren A, et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes. 2007;56(3):583.
Article
CAS
PubMed
Google Scholar
Kasimanickam VR, Kasimanickam RK, Kastelic JP, Stevenson JS. Associations of adiponectin and fertility estimates in Holstein bulls. Theriogenology. 2013;79(5):766–777.e763.
Article
CAS
PubMed
Google Scholar
Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem. 2010;285(15):11348–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frerman FE, Sabran JL, Taylor JL, Grossberg SE. Leucine catabolism during the differentiation of 3T3-L1 cells. Expression of a mitochondrial enzyme system. J Biol Chem. 1983;258(11):7087–93.
CAS
PubMed
Google Scholar
Kedishvili NY, Popov KM, Jaskiewicz JA, Harris RA. Coordinated expression of valine catabolic enzymes during adipogenesis: analysis of activity, mRNA, protein levels, and metabolic consequences. Arch Biochem Biophys. 1994;315(2):317–22.
Article
CAS
PubMed
Google Scholar
Crown SB, Marze N, Antoniewicz MR. Catabolism of branched chain amino acids contributes significantly to synthesis of odd-chain and even-chain fatty acids in 3T3-L1 adipocytes. PLoS One. 2016;10(12):e0145850.
Article
Google Scholar
Lynch CJ, Gern B, Lloyd C, Hutson SM, Eicher R, Vary TC. Leucine in food mediates some of the postprandial rise in plasma leptin concentrations. Am J Phys Endocrinol Metab. 2006;291(3):E621–30.
Article
CAS
Google Scholar
Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ. Hypothalamic mTOR signaling regulates food intake. Science. 2006;312(5775):927–30.
Article
CAS
PubMed
Google Scholar
McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, Gerszten RE, Clish CB, Mootha VK, Grinspoon SK, Fleischman A. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatric Obesity. 2013;8(1):52–61.
Article
CAS
PubMed
Google Scholar
Pietiläinen KH, Naukkarinen J, Rissanen A, Saharinen J, Ellonen P, Keränen H, Suomalainen A, Götz A, Suortti T, Yki-Järvinen H, et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med. 2008;5(3):e51.
Article
PubMed
PubMed Central
Google Scholar
De Pauw A, Tejerina S, Raes M, Keijer J, Arnould T. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. Am J Pathol. 2009;175(3):927–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldenthal MJ, Marin-Garcia J. Mitochondrial signaling pathways: a receiver/integrator organelle. Mol Cell Biochem. 2004;262(1-2):1–16.
Article
CAS
PubMed
Google Scholar
Wilson-Fritch L, Burkart A, Bell G, Mendelson K, Leszyk J, Nicoloro S, Czech M, Corvera S. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol. 2003;23(3):1085–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Owen OE, Kalhan SC, Hanson RW. The key role of Anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002;277(34):30409–12.
Article
CAS
PubMed
Google Scholar