Ringer S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol. 1883;4:29–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hansteen B. Über das verhaltender kulturpflanzenzu den bodensalzen. Jahrb Wiss Bot. 1910;47:289–376.
Google Scholar
Carafoli E. Calcium signaling: a tale for all seasons. Proc Natl Acad Sci U S A. 2002;99:1115–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whalley HJ, Knight MR. Calcium signatures are decoded by plants to give specific gene responses. New Phytol. 2013;197:690–3.
Article
CAS
PubMed
Google Scholar
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Bio. 2003;4:517–29.
Article
CAS
Google Scholar
Clapham DE. Calcium signaling. Cell. 2007;131:1047–58.
Article
CAS
PubMed
Google Scholar
Hetherington A, Trewavas A. Calcium-dependent protein kinase in pea shoot membranes. FEBS Lett. 1982;145:67–71.
Article
CAS
Google Scholar
Lewandowski C. Properties of a calmodulin-activated Ca2+-dependent protein kinase from wheat germ. BBA-Gen Subj. 1983;761:1–12.
Article
Google Scholar
Luan S. Coding and decoding of calcium signals in plants. Berlin Heidelberg: Springer-Verlag; 2009.
Google Scholar
Cai X. Unicellular Ca2+ signaling “toolkit” at the origin of metazoa. Mol Biol Evol. 2008;25:1357–61.
Article
CAS
PubMed
Google Scholar
Patil S, Takezawa D, Poovaiah BW. Plant calcium/calmodulin-dependent protein kinase gene with a neural visinin-like calcium-binding domain. Proc Natl Acad Sci U S A. 1995;92:4897–901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Liu B, Liang S, Jones RL, Lu Y. Molecular and biochemical characterization of a calcium/calmodulin-binding protein kinase from rice. Biochem J. 2002;157:145–57.
Nagata T. Comparative analysis of plant and animal calcium signal transduction element using plant full-length cDNA data. Mol Biol Evol. 2004;21:1855–70.
Article
CAS
PubMed
Google Scholar
Harper J. A calcium-dependent protein kinase with a regulatory domain similar to calmodilin. Sci. 1991;252:951–4.
Article
CAS
Google Scholar
Zhu K, Chen F, Liu J, Chen X, Hewezi T, Cheng ZM. Evolution of an intron-poor cluster of the CIPK gene family and expression in response to drought stress in soybean. Sci Rep. 2016;6:28225.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi J, Kim K, Ritz O, Albrecht V, Gupta R, Harter K, et al. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell. 1999;11:2393–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soderling T. The Ca2+ − calmodulin-dependent protein kinase cascade. Trends Biochem Sci. 1999;4:232–6.
Article
Google Scholar
Zhang XS, Choi JH. Molecular evolution of calmodulin-like domain protein kinases (CDPKs) in plants and protists. J Mol Evol. 2001;53:214–24.
Article
CAS
PubMed
Google Scholar
Edel KH, Kudla J. Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization. Cell Calcium. 2015;57:231–46.
Article
CAS
PubMed
Google Scholar
Valle-aviles L, Valentin-berrios S, Gonzalez-mendez RR, Valle NR. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii. BMC Microbiol. 2007;7:107.
Article
PubMed
PubMed Central
Google Scholar
Zhang L, Lu YT. Calmodulin-binding protein kinases in plants. Trends Plant Sci. 2003;8:123–7.
Article
CAS
PubMed
Google Scholar
Hrabak E. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 2003;132:666–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen F, Fasoli M, Tornielli GB, Dal Santo S, Pezzotti M, Zhang L, et al. The evolutionary history and diverse physiological roles of the grapevine calcium-dependent protein kinase gene family. PLoS One. 2013;8:e80818.
Article
PubMed
PubMed Central
Google Scholar
Chen F, Zhang L, Cheng Z-M. The calmodulin fused kinase novel gene family is the major system in plants converting Ca2+ signals to protein phosphorylation responses. Sci Rep. 2017;7:4127.
Article
PubMed
PubMed Central
Google Scholar
Chen F, Yin H, Liang Y, Cai B. Evolution of calcium-dependent portein kinase gene family in apple (Malus domestica). Acta Agric Jiangxi. 2013;25:15–20.
CAS
Google Scholar
Weinl S, Kudla J. The CBL–CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol. 2009;184:517–28.
Article
CAS
PubMed
Google Scholar
Paramecium N, Genazzani A, Ladenburger E. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium. 2012;51:351–82.
Article
Google Scholar
Plattner H. Molecular aspects of calcium signalling at the crossroads of unikont and bikont eukaryote evolution-the ciliated protozoan Paramecium in focus. Cell Calcium. 2015;57:174–85.
Article
CAS
PubMed
Google Scholar
Burki F, Shalchian-Tabrizi K, Minge M, Skjæveland A, Nikolaev S, Jakobsen K, et al. Phylogenomics reshuffles the eukaryotic supergroups. PLoS One. 2007;2:e790.
Article
PubMed
PubMed Central
Google Scholar
Manning G, Whyte D, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Sci. 2002;298:1912–34.
Article
CAS
Google Scholar
Anamika K, Bhattacharya A, Srinivasan N. Analysis of the protein kinome of Entamoeba histolytica. Proteins. 2008;71:995–1006.
Article
CAS
PubMed
Google Scholar
Zulawski M, Schulze G, Braginets R, Hartmann S, Schulze W. The Arabidopsis Kinome: phylogeny and evolutionary insights into functional diversification. BMC Genomics. 2014;15:548.
Article
PubMed
PubMed Central
Google Scholar
Parsons M, Worthey EA, Ward PN, Mottram JC. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics. 2005;6:127.
Article
PubMed
PubMed Central
Google Scholar
Talevich E, Tobin A, Kannan N, Doerig C. An evolutionary perspective on the kinome of malaria parasites. Phil Trans R Soc B. 2012;367:2607–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adl SM, Simpson AGB, Lane CE, Lukes J, Bass D, Bowser SS, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59:429–93.
Article
PubMed
PubMed Central
Google Scholar
Wang G, Lovato A, Liang YH, Wang M, Chen F, Tornielli GB, et al. Validation by isolation and expression analyses of the mitogen-activated protein kinase gene family in the grapevine (Vitis vinifera L.). Aust J Grape Wine Res. 2014;20:255–62.
Article
CAS
Google Scholar
Zhu X, Dunand C, Snedden W, Galaud JP. CaM and CML emergence in the green lineage. Trends Plant Sci. 2015;20:483–9.
Article
CAS
PubMed
Google Scholar
Parfrey LW, Lahr DJG, Knoll AH, Katz LA. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A. 2011;108:13624–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195:115–22.
Article
PubMed
Google Scholar
Becker B. Snow ball earth and the split of Streptophyta and Chlorophyta. Trends Plant Sci. 2013;18:180–3.
Article
CAS
PubMed
Google Scholar
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Sci. 2014;346:763–7.
Article
CAS
Google Scholar
Inositol LOF, Morenot SNJ, Docampos R, Trypanosoma W. Calcium homeostasis in procyclic and bloodstream forms of Trypanosoma brucei. J Biol Chem. 1992;267:6020–6.
Google Scholar
Alsford S, Turner DJ, Obado SO, Sanchez-flores A, Glover L, Berriman M, et al. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res. 2011;21:915–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto K, Kudla J. Calcium decoding mechanisms in plants. Biochimie. 2011;93:2054–9.
Article
CAS
PubMed
Google Scholar
Martin DMA, Miranda-saavedra D, Barton GJ. Kinomer v. 1.0 : a database of systematically classified eukaryotic protein kinases. Nucleic Acids Res. 2009;37:244–50.
Article
Google Scholar
Stern DL. The genetic causes of convergent evolution. Nat Rev Genet. 2013;14:751–64.
Article
CAS
PubMed
Google Scholar
Valdivia HO, Reis-Cunha JL, Rodrigues-Luiz GF, Baptista RP, Baldeviano GC, Gerbasi RV, et al. Comparative genomic analysis of Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis. BMC Genomics. 2015;16:715.
Article
PubMed
PubMed Central
Google Scholar
Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al. The genome of the African trypanosome Trypanosoma brucei. Sci. 2005;309:416–22.
Article
CAS
Google Scholar
Stock A, Robinson V, Goudreau P. Two component signal transduction. Annu Rev Biochem. 2000;69:183–215.
Article
CAS
PubMed
Google Scholar
Oduor RO, Ojo KK, Williams GP, Bertelli F, Mills J, Maes L, et al. Trypanosoma brucei glycogen synthase kinase-3, a target for anti-trypanosomal drug development: a public-private partnership to identify novel leads. PLoS Negl Trop Dis. 2011;5:e1017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khare S, Nagle AS, Biggart A, Lai YH, Liang F, Davis LC, et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nat. 2016;537:229–33.
Article
CAS
Google Scholar
Douglas GR, Mcalpine PJ, Hamerton JL. Regional localization of loci for human PGM1 and 6PGD on human chromosome one by use of hybrids of Chinese hamster-human somatic cells. Proc Natl Acad Sci U S A. 1973;70:2737–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Croft SL, Coombs GH. Leishmaniasis – current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003;19:502–8.
Article
CAS
PubMed
Google Scholar
Huang G, Bartlett PJ, Thomas AP, Moreno SNJ, Docampo R. Acidocalcisomes of Trypanosoma brucei have an inositol 1,4,5-trisphosphate receptor that is required for growth and infectivity. Proc Natl Acad Sci U S A. 2013;110:1887–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto M, Enomoto M, Morales J, Kurebayashi N, Sakurai T, Hashimoto T, et al. Inositol 1,4,5-trisphosphate receptor regulates replication, differentiation, infectivity and virulence of the parasitic protist Trypanosoma cruzi. Mol Microbiol. 2013;87:1133–50.
Article
CAS
PubMed
Google Scholar
Ward P, Equinet L, Packer J, Doerig C. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics. 2004;5:79.
Article
PubMed
PubMed Central
Google Scholar
Lucet IS, Tobin A, Drewry D, Wilks AF. Plasmodium kinases as targets for new-generation antimalarials. Futur Med Chem. 2012;4:2295–310.
Article
CAS
Google Scholar
Croft SL, Olliaro P. Leishmaniasis chemotherapy-challenges and opportunities. Clin Microbiol Infect. 2011;17:1478–83.
Article
CAS
PubMed
Google Scholar
Jamonneau V, Ilboudo H, Kabore J, Kaba D, Koffi M, Solano P, et al. Untreated human infections by Trypanosoma brucei gambiense are not 100% fatal. PLoS Negl Trop Dis. 2012;6:e1691.
Article
PubMed
PubMed Central
Google Scholar
Croft SL. Neglected tropical diseases in the genomics era: re-evaluating the impact of new drugs and mass drug administration. Genome Biol. 2016;17:46.
Article
PubMed
PubMed Central
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamada KD, Tomii K, Katoh K. Application of the MAFFT sequence alignment program to large data— reexamination of the usefulness of chained guide trees. Bioinform. 2016;32:3246–51.
Article
CAS
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinform. 2014;30:1312–3.
Article
CAS
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinform. 2003;19:1572–4.
Article
CAS
Google Scholar
Burge CB, Karlinb S. Finding the genes in genomic DNA. Curr Opin Struc Biol. 1998;8:346–54.
Article
CAS
Google Scholar
Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 2015;43:D257–60.
Article
CAS
PubMed
Google Scholar
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12:7–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39:270–7.
Article
Google Scholar
Nilsson D, Gunasekera K, Mani J, Osteras M, Farinelli L, Baerlocher L, et al. Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei. PLoS Pathog. 2010;6:21–2.
Article
Google Scholar
Verma J. Data analysis in management using SPSS. New Delhi: Springer India; 2012.
Google Scholar