Russo V, Martienssen R, Riggs A. Epigenetic mechanisms of gene regulation. In: Riggs A, Martienssen R, Russo V, editors. Cold Spring Harbor laboratory press. New York: Cold spring harbor; 1996.
Google Scholar
Kosak ST, Goudine M. Gene order and dynamic domains. Science. 2004;306:644–7.
Article
CAS
PubMed
Google Scholar
Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 a resolution. Nature. 1997;389:251–60.
Article
CAS
PubMed
Google Scholar
Grewal SIS, Jia S. Heterochromatin revisited. Nat Rev Genet. 2007;8:35–46.
Article
CAS
PubMed
Google Scholar
Jablonka E, Lamb MJ. The changing concept of epigenetics. Ann N Y Acad Sci. 2002;981:82–96.
Article
PubMed
Google Scholar
Breiling A, Lyko F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin. 2015;8:24. https://doi.org/10.1186/s13072-015-0016-6. eCollection 2015. Review.
Liebers R, Rassoulzadegan M, Lyoko F. Epigenetic regulation by heritable RNA. PLoS Genet. 2014;10:e1004296.
Article
PubMed
PubMed Central
Google Scholar
Aguilera O, Fernández AF, Muñoz A, Fraga MF. Epigenetics and environment: a complex relationship. J Appl Physiol. 2010;109:243–51.
Article
CAS
PubMed
Google Scholar
Hauser M-T, Aufsatz W, Jonak C, Luschnig C. Transgenerational epigenetic inheritance in plants. Biochim Biophys Acta. 1809;2011:459–68.
Google Scholar
Bayer-Santos E, Marini MM, da Silveira JF. Non-coding RNAs in host–pathogen interactions: subversion of mammalian cell functions by protozoan parasites. Front Microbiol. 2017;8:1–8.
Article
Google Scholar
Zhu QH, Shan WX, Ayliffe MA, Wang MB. Epigenetic mechanisms: an emerging player in plant-microbe interactions. Mol Plant-Microbe Interact. 2016;29(3):187–96.
Article
CAS
PubMed
Google Scholar
Castagnone-Sereno P, Danchin EGJ, Perfus-Barbeoch L, Abad P. Diversity and evolution of root-knot nematodes, genus Meloidogyne: new insights from the genomic era. Annu Rev Phytopathol. 2013;51:203–20.
Article
CAS
PubMed
Google Scholar
Castagnone-Sereno P, Wajnberg E, Bongiovanni M, Leroy F, Dalmasso A. Genetic variation in Meloidogyne incognita virulence against the tomato mi resistance gene : evidence from isofemale line selection studies. Theor Appl Genet. 1994;88:749–53.
Article
CAS
PubMed
Google Scholar
Bost SC, Triantaphyllou AC. Genetic basis of the epidemiologic effects of resistance to Meloidogyne incognita in the tomato cultivar small fry. J Nematol. 1982;14:540–4.
CAS
PubMed
PubMed Central
Google Scholar
Jarquin-Barberena H, Dalmasso A, de Guiran G, Cardin MC. Acquired virulence in the plant parasitic nematode Meloidogyne incognita. I. Biological analysis of the phenomenon. Rev Nématol. 1991;14:299–303.
Google Scholar
Perfus-Barbeoch L, Castagnone-Sereno P, Reichelt M, Fneich S, Roquis D, Pratx L, et al. Elucidating the molecular bases of epigenetic inheritance in non-model invertebrates: the case of the root-knot nematode Meloidogyne incognita. Front Physiol. 2014;5:211.
Article
PubMed
PubMed Central
Google Scholar
Abad P, Gouzy J, Aury J-M, Castagnone-Sereno P, Danchin EGJ, Deleury E, et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol. 2008;26:909–15.
Article
CAS
PubMed
Google Scholar
Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, et al. Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. Proc Natl Acad Sci U S A. 2008;105:14802–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanc-Mathieu R, Perfus-Barbeoch L, Aury JM, Da Rocha M, Gouzy J, Sallet E, Martin-Jimenez C, Bailly-Bechet M, Castagnone-Sereno P, Flot JF, Kozlowski DK, Cazareth J, Couloux A, Da Silva C, Guy J, Kim-Jo YJ, Rancurel C, Schiex T, Abad P, Wincker P, Danchin EGJ. Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes. PLoS Genet. 2017;13(6):e1006777.
Article
PubMed
PubMed Central
Google Scholar
Medvedeva YA, Lennartsson A, Ehsani R, Kulakovskiy IV, Vorontsov IE, Panahandeh P, et al. EpiFactors: a comprehensive database of human epigenetic factors and complexes. Database. 2015;2015:bav067.
Article
PubMed
PubMed Central
Google Scholar
Soyer JL, El Ghalid M, Glaser N, Ollivier B, Linglin J, Grandaubert J, et al. Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. Talbot NJ, editor. PLoS Genet. 2014;10:e1004227.
Article
PubMed
PubMed Central
Google Scholar
Bin Terhem R, van JAL K. Dual mating in Botrytis cinerea. In: Book of abstracts 10th international mycological congress; 2014. p. 403.
Google Scholar
Rider SD, Srinivasan DG, Hilgarth RS. Chromatin-remodelling proteins of the pea aphid, Acyrthosiphon pisum (Harris). Insect Mol Biol. 2010;19:201–14.
Article
CAS
PubMed
Google Scholar
Rasmussen EMK, Amdam GV. Cytosine modifications in the honey bee (Apis mellifera) worker genome. Front. Genet. 2015;6:1–5.
CAS
Google Scholar
Anderson L, Pierce RJ, Verjovski-Almeida S. Schistosoma mansoni histones: from transcription to chromatin regulation; an in silico analysis. Mol Biochem Parasitol. 2012;183:105–14.
Article
CAS
PubMed
Google Scholar
Mourão MM, Grunau C, LoVerde PT, Jones MK, Oliveira G. Recent advances in Schistosoma genomics. Parasite Immunol. 2012;34:151–62.
Article
PubMed
Google Scholar
Bertin B, Oger F, Cornette J, Caby S, Noël C, Capron M, et al. Schistosoma mansoni CBP/p300 has a conserved domain structure and interacts functionally with the nuclear receptor SmFtz-F1. Mol Biochem Parasitol. 2006;146:180–91.
Article
CAS
PubMed
Google Scholar
Ay F, Bunnik EM, Varoquaux N, Vert J-P, Noble WS, Le Roch KG. Multiple dimensions of epigenetic gene regulation in the malaria parasite plasmodium falciparum. BioEssays. 2015;37:182–94.
Article
CAS
PubMed
Google Scholar
The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.
Article
Google Scholar
Howe KL, Bolt BJ, Cain S, Chan J, Chen WJ, Davis P, et al. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res. 2016;44:D774–80.
Article
CAS
PubMed
Google Scholar
Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite − a comprehensive resource for helminth genomics. Mol Biochem Parasitol. 2016; https://doi.org/10.1016/j.molbiopara.2016.11.005.
Li L, Jr CJS, Roos DS. OrthoMCL: identification of Ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44(D1):D279–D285. d.
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cottret L, Rancurel C, Briand M, Carrere S. Family-companion: analyse, visualise, browse, query and share your homology clusters. bioRxiv 266742; doi: https://doi.org/10.1101/266742.
Harris TW, Baran J, Bieri T, Cabunoc A, Chan J, Chen WJ, et al. WormBase 2014: new views of curated biology. Nucleic Acids Res. 2014;42:789–93.
Article
Google Scholar
Mariño-Ramírez L, Levine KM, Morales M, Zhang S, Moreland RT, Baxevanis AD, et al. The histone database: an integrated resource for histones and histone fold-containing proteins. Database. 2011; https://doi.org/10.1093/database/bar048.
Liu L, Zhen XT, Denton E, Marsden BD, Schapira M. ChromoHub: a data hub for navigators of chromatin-mediated signalling. Bioinformatics. 2012;28:2205–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khare SP, Habib F, Sharma R, Gadewal N, Gupta S, Galande S. HIstome--a relational knowledgebase of human histone proteins and histone modifying enzymes. Nucleic Acids Res. 2012;40:D337–42.
Article
CAS
PubMed
Google Scholar
Banerjee T, Chakravarti D. A peek into the complex realm of histone phosphorylation. Mol Cell Biol. 2011;31:4858–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Lorenzo A, Bedford MT. Histone arginine methylation. FEBS Lett. 2011;585:2024–31. Federation of European Biochemical Societies
Article
CAS
PubMed
Google Scholar
Finnegan EJ, Kovac KA. Plant DNA methyltransferases. Plant Mol Biol. 2000;43:189–201.
Article
CAS
PubMed
Google Scholar
Pikaard C, Mittelsten Scheid O. Epigenetic regulation in plants. Cold Spring Harb Perspect Biol. 2014;6:1–31.
Article
CAS
Google Scholar
Rossetto D, Avvakumov N, Côté J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics. 2012;7:1098–108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simó-Riudalbas L, Esteller M. Targeting the histone orthography of cancer: drugs for writers, erasers and readers. Br J Pharmacol. 2014;172:2716–32.
Article
PubMed
PubMed Central
Google Scholar
Yigit E, Batista PJ, Bei Y, Pang KM, Chen CCG, Tolia NH, et al. Analysis of the C. Elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell. 2006;127:747–57.
Article
CAS
PubMed
Google Scholar
Punta M, Coggill P, Eberhardt R, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families databases. Nucleic Acids Res. 2012;40:D290–301. 30:1–12
Article
CAS
PubMed
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–30.
Article
CAS
PubMed
Google Scholar
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–85.
Article
CAS
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
Article
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8 a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:2010–1.
Article
Google Scholar
Rambaut A. FigTree, a graphical viewer of phylogenetic trees. 2007. http://tree.bio.ed.ac.uk/software/figtree. Accessed 9 July 2014.
Google Scholar
Danchin EGJ, Arguel M-J, Campan-Fournier A, Perfus-Barbeoch L, Magliano M, Rosso M-N, et al. Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining. PLoS Pathog. 2013;9:e1003745.
Article
PubMed
PubMed Central
Google Scholar
Lee T, Zhai J, Meyers BC. Conservation and divergence in eukaryotic DNA methylation. PNAS. 2010;107(20):9027–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao F, Liu X, Wu X-P, Wang X-L, Gong D, Lu H, et al. Differential DNA methylation in discrete developmental stages of the parasitic nematode Trichinella spiralis. Genome Biol. 2012;13:R100.
Article
PubMed
PubMed Central
Google Scholar
Luo G-Z, Blanco MA, Greer EL, He C, Shi Y. DNA N6-Methyladenine: a new epigenetic mark in eukaryotes? Nat Rev Mol Cell Biol. 2015;16(12):705–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D, Hsu CH, Aravind L, He C, Shi Y. DNA methylation on N6-adenine in C. elegans. Cell. 2015;161(4):868–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Brown ZK, Greer EL. N6-methyladenine: a conserved and dynamic DNA mark. Adv Exp Med Biol. 2016;945:213–46. https://doi.org/10.1007/978-3-319-43624-1_10.
Article
PubMed
PubMed Central
Google Scholar
Meister G. Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet. 2013;14:447–59.
Article
CAS
PubMed
Google Scholar
Pavelec DM, Lachowiec J, Duchaine TF, Smith HE, Kennedy S. Requirement for the ERI/DICER complex in endogenous RNA interference and sperm development in Caenorhabditis elegans. Genetics. 2009;183(4):1283–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Billi AC, Fischer SE, Kim JK. Endogenous RNAi pathways in C. Elegans. WormBook. 2014;7:1–49.
Article
Google Scholar
Tariq M, Paszkowski J. DNA and histone methylation in plants. Trends Genet. 2004;20:244–51.
Article
CAS
PubMed
Google Scholar
Salzberg A, Fisher O, Siman-Tov R, Ankri S. Identification of methylated sequences in genomic DNA of adult Drosophila melanogaster. Biochem Biophys Res Commun. 2004;322:465–9.
Article
CAS
PubMed
Google Scholar
Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 2008;9:465–76.
Article
CAS
PubMed
Google Scholar
Chen Z, Riggs AD. DNA methylation and demethylation in mammals. J Biol Chem. 2011;286:18347–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiani J, Grandjean V, Liebers R, Tuorto F, Ghanbarian H, Lyko F, et al. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet. 2013;9:e1003498.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19(2):81-92. https://doi.org/10.1038/nrg.2017.80. Epub 2017 Oct 16. Review.
Jeltsch A, Ehrenhofer-Murray A, Jurkowski T, Lyko F, Reuter G, Ankri S, et al. Mechanism and biological role of Dnmt2 in nucleic acid methylation. RNA Biol. 2016;6286:1–16.
Google Scholar
Allen MD, Grummitt CG, Hilcenko C, Min SY, Tonkin LM, Johnson CM, et al. Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase. EMBO J. 2006;25:4503–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thatcher TH, Gorovsky M a. Phylogenetic analysis of the core histones H2A, H2B, H3, and H4. Nucleic Acids Res. 1994;22:174–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Böhm L, Mitchell TC. Sequence conservation in the N-terminal domain of histone H1. FEBS Lett. 1985;193:1–4.
Article
PubMed
Google Scholar
Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.
Article
CAS
PubMed
Google Scholar
Sims RJ, Nishioka K, Reinberg D. Histone lysine methylation: a signature for chromatin function. Trends Genet. 2003;19:629–39.
Article
CAS
PubMed
Google Scholar
Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature. 2011;479:365–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greer EL, Beese-Sims SE, Brookes E, Spadafora R, Zhu Y, Rothbart SB, et al. A histone methylation network regulates transgenerational epigenetic memory in C.Elegans. Cell Rep. 2014;7:113–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roudier F, Ahmed I, Sarazin A, Mary-huard T, Cortijo S, Bouyer D, et al. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 2011;30:1928–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Filion GJ, Van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell. 2010;143:212–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu T, Rechtsteiner A, Egelhofer TA, Vielle A, Latorre I, Cheung M, et al. Broad chromosomal domains of histone modification patterns in C. Elegans. Genome Res. 2011;227:227–36.
Article
Google Scholar
Lv J, Liu H, Wang Q, Tang Z, Hou L, Zhang B. Molecular cloning of a novel human gene encoding histone acetyltransferase-like protein involved in transcriptional activation of hTERT. Biochem Biophys Res Commun. 2003;311:506–13.
Article
PubMed
Google Scholar
Liu H, Ling Y, Gong Y, Sun Y, Hou L, Zhang B. DNA damage induces N-acetyltransferase NAT10 gene expression through transcriptional activation. Mol Cell Biochem. 2007;300:249–58.
Article
CAS
PubMed
Google Scholar
Shen Q, Zheng X, McNutt M a, Guang L, Sun Y, Wang J, et al. NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp Cell Res. 2009;315:1653–67.
Article
CAS
PubMed
Google Scholar
Duveau F, Félix M-A. Role of pleiotropy in the evolution of a cryptic developmental variation in Caenorhabditis elegans. PLoS Biol. 2012;10:e1001230.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee TI, Causton HC, Holstege FC, Shen WC, Hannett N, Jennings EG, et al. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature. 2000;405:701–4.
Article
CAS
PubMed
Google Scholar
O’Brien T, Tjian R. Different functional domains of TAFII250 modulate expression of distinct subsets of mammalian genes. Proc Natl Acad Sci U S A. 2000;97:2456–61.
Article
PubMed
PubMed Central
Google Scholar
Dunphy EL, Johnson T, Auerbach SS, Wang EH. Requirement for TAF(II)250 acetyltransferase activity in cell cycle progression. Mol Cell Biol. 2000;20:1134–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker AK, Shi Y, Blackwell TK. An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription. J Biol Chem. 2004;279:15339–47.
Article
CAS
PubMed
Google Scholar
Andersen EC, Horvitz HR. Two C. Elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development. Development. 2007;134:2991–9.
Article
CAS
PubMed
Google Scholar
Fisher K, Southall SM, Wilson JR, Poulin GB. Methylation and demethylation activities of a C. Elegans MLL-like complex attenuate RAS signalling. Dev. Biol. 2010;341:142–53.
CAS
Google Scholar
Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS, et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. Elegans. Nature. 2010;466:383–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirienko NV, Fay DS. SLR-2 and JMJC-1 regulate an evolutionarily conserved stress-response network. EMBO J. 2010;29:727–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moura RM, Davis EL, Luzzi BM, Boerma HR, Hussey RS. Post-Infectional development of Meloidogyne incognita on susceptible and resistant soybean genotypes. Nematropica. 1993;23:7–13.
Google Scholar
Triantaphyllou AC. Environmental sex differentiation of nematodes in relation to pest management. Annu Rev Phytopathol. 1973;11:441–62.
Article
Google Scholar
Davide RG, Triantaphyllou AC. Influence of the environment on development and sex differenciation of root-knot nematodes. Nematologica. 1968;14:37–46.
Article
Google Scholar
Snyder DW, Opperman CH, Bird DM. A method for generating Meloidogyne incognita males. J Nematol. 2006;38:192–4.
PubMed
PubMed Central
Google Scholar
Davide RG, Triantaphyllou AC. Influence of the environment on development and sex differentiation of root-knot nematodes. Nematologica. 1967;13:102–10.
Article
Google Scholar
Goldstein P, Triantaphyllou AC. Karyotype analysis of Meloidogyne hapla by 3-D reconstruction of synaptonemal complexes from electron microscopy of serial sections. Chromosoma. 1978;70:131–9.
Article
Google Scholar
Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol. 2012;13:297–311.
Article
CAS
PubMed
Google Scholar
Pennini ME, Perrinet S, Dautry-Varsat A, Subtil A. Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen chlamydia trachomatis. PLoS Pathog. 2010;6:1–12.
Article
Google Scholar
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24.
Article
CAS
PubMed
Google Scholar
Han T, Manoharan AP, Harkins TT, Bouffard P, Fitzpatrick C, Chu DS, et al. 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2009;106:18674–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vasale JJ, Gu W, Thivierge C, Batista PJ, Claycomb JM, Youngman EM, et al. Sequential rounds of RNA-dependent RNA transcription drive endogenous small-RNA biogenesis in the ERGO-1/Argonaute pathway. Proc Natl Acad Sci U S A. 2010;107:3582–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conine CC, Batista PJ, Gu W, Claycomb JM, Chaves D a, Shirayama M, et al. Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26G-RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2010;107:3588–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shirayama M, Seth M, Lee HC, Gu W, Ishidate T, Conte D, et al. PiRNAs initiate an epigenetic memory of nonself RNA in the C. Elegans germline. Cell. 2012;150:65–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarkies P, Selkirk ME, Jones JT, Blok V, Boothby T, Goldstein B, Hanelt B, Ardila-Garcia A, Fast NM, Schiffer PM, Kraus C, Taylor MJ, Koutsovoulos G, Blaxter ML, Miska EA. Ancient and novel small RNA pathways compensate for the loss of piRNAs in multiple independent nematode lineages. PLoS Biol. 2015;13(2):e1002061.
Article
PubMed
PubMed Central
Google Scholar