Chen Y, Zhou B. Flora of China. Beijing: Science Press; 1982.
Google Scholar
Quan ZW, Pan L, Ke WD, Ding Y. Polymorphic microsatellite markers in Euryale ferox Salisb. (Nymphaeaceae). Mol Ecol Resour. 2009;9(1):330–2.
Article
CAS
PubMed
Google Scholar
Ahmed D, Kumar V, Verma A, Shukla GS, Sharma M. Antidiabetic, antioxidant, antihyperlipidemic effect of extract of Euryale ferox salisb. With enhanced histopathology of pancreas, liver and kidney in streptozotocin induced diabetic rats. SpringerPlus. 2015;4:315.
Article
PubMed
PubMed Central
Google Scholar
Verma AK, Banerji BK, Chakrabarty D, Datta SK. Studies on Makhana (Euryale ferox Salisbury). Curr Sciindia. 2010;99(6):795–800.
CAS
Google Scholar
Imanishi A, Imanishi J. Seed dormancy and germination traits of an endangered aquatic plant species, Euryale ferox Salisb. (Nymphaeaceae). Aquat Bot. 2014;119:80–3.
Article
Google Scholar
Ling QZ, Yuan HB, Zhao MX, Wei ZJ, Qi LH, Xu W. Determination of protein and amino acid in seed of Euryale ferox salisb. In wabu lake. Food Res Development. 2009;6:039.
Google Scholar
Tan SB, Jin T. Nutrtive and health care function and development of Euryale ferox salisb. Food Engineering. 2008;3:8–10.
Google Scholar
Li SZ. Compendium of Materia Medica. Beijing: People’s Medical Publishing House. 2004;33:1902–4.
Google Scholar
Zhao H, Zhao SX, Guillaume D, Sun CQ. New cerebrosides from Euryale ferox. J Nat Prod. 1994;57(1):138–41.
Article
CAS
PubMed
Google Scholar
Das S, Der P, Raychaudhuri U, Maulik N, Das DK. The effect of Euryale ferox (Makhana), an herb of aquatic origin, on myocardial ischemic reperfusion injury. Mol Cell Biochem. 2006;289(1–2):55–63.
Article
CAS
PubMed
Google Scholar
Kumar H, Priya P, Singh N, Kumar M, Choudhary BK, Kumar L, et al. RAPD and ISSR marker-based comparative evaluation of genetic diversity among Indian germplasms of Euryale ferox: an aquatic food plant. Appl Biochem Biotech. 2016;180(7):1345–60.
Article
CAS
Google Scholar
Song CW, Wang SM, Zhou LL, Hou FF, Wang KJ, Han QB, et al. Isolation and identification of compounds responsible for antioxidant capacity of Euryale ferox seeds. J Agr Food Chem. 2011;59(4):1199–204.
Article
CAS
Google Scholar
Wu CY, Chen R, Wang XS, Shen B, Yue W, Wu QA. Antioxidant and anti-fatigue activities of phenolic extract from the seed coat of Euryale ferox salisb. And identification of three phenolic compounds by LC-ESI-MS/MS. Molecules. 2013;18(9):11003–21.
Article
CAS
PubMed
Google Scholar
Hou X, Shao F, Ma Y, Lu S. The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genome-wide characterization, molecular cloning and expression analysis. Mol Biol Rep. 2013;40(7):4301–10.
Article
CAS
PubMed
Google Scholar
Du H, Ran F, Dong HL, Wen J, Li JN, Liang Z. Genome-wide analysis, classification, evolution, and expression analysis of the cytochrome P450 93 family in land plants. PLoS One. 2016;11(10):e0165020.
Article
PubMed
PubMed Central
Google Scholar
Nielsen KA, Møller BL. Cytochrome P450s in Plants. In: Ortiz de Montellano P.R. (eds) Cytochrome P450. Boston: Springer; 2005.
Shang QM, Li L, Dong CJ. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L. Planta. 2012;236(4):1093–105.
Article
CAS
PubMed
Google Scholar
Raes J, Rohde A, Christensen JH, Peer YVD, Boerjan W. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol. 2003;133(3):1051–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reichert AI, He XZ, Dixon RA. Phenylalanine ammonia-lyase (PAL) from tobacco (Nicotiana tabacum): characterization of the four tobacco PAL genes and active heterotetrameric enzymes. Biochem J. 2009;424(2):233–42.
Article
CAS
PubMed
Google Scholar
Chang A, Lim MH, Lee SW, Robb EJ, Nazar RN. Tomato phenylalanine ammonia-lyase gene family, highly redundant but strongly underutilized. J Biol Chem. 2008;283(48):33591–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol. 2004;135(2):756–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson DR. The cytochrome P450 homepage. Hum Genomics. 2009;4(1):59–65.
CAS
PubMed
PubMed Central
Google Scholar
Wanner LA, Li G, Ware D, Somssich IE, Davis KR. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol. 1995;27(2):327–38.
Article
CAS
PubMed
Google Scholar
Pombo MA, Martinez GA, Civello PM. Cloning of FaPAL6 gene from strawberry fruit and characterization of its expression and enzymatic activity in two cultivars with different anthocyanin accumulation. Plant Sci. 2011;181(2):111–8.
Article
CAS
PubMed
Google Scholar
Ivamoto ST, Sakuray LM, Ferreira LP, Kitzberger CSG, Scholz MBS, Pot D, et al. Diterpenes biochemical profile and transcriptional analysis of cytochrome p450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development. Plant Physiol Bioch. 2017;111:340–7.
Article
CAS
Google Scholar
Ma M, Wang Q, Li Z, Cheng H, Li Z, Liu X, et al. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. Plant J Cell Mol Biol. 2015;83(2):312–25.
Article
CAS
Google Scholar
Cheng LB, Li SY, Chen SN, Wang Y, Yu MZ, Chen XH, et al. Transcriptome analysis of gene expression during Chinese water chestnut storage organ formation. PLoS One. 2016;11(10):e0164223.
Article
PubMed
PubMed Central
Google Scholar
Yu RG, Xu L, Zhang W, Wang Y, Luo XB, Wang RH, et al. De novo taproot transcriptome sequencing and analysis of major genes involved in sucrose metabolism in radish (Raphanus sativus L.). Front Plant Sci. 2016;7:585.
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng YY, Li JQ, Wu SF, Zhu YP, Chen YW, He FC. Integrated nr database in protein annotation system and its localization. Comput Eng. 2006;32:71–4.
Google Scholar
Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28(1):33–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2004;32:D115–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32:D277–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Michael Cherry J, et al. Gene ontology: tool for the unification of biology. Nature Genet. 2000;25:25–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iseli C, Jongeneel CV, Bucher P. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proceedings. International Conference on Intelligent Systems for Molecular Biology. 1999;99:138–58.
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
Article
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 2013;29(8):1035–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K. Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
Google Scholar
Liang DN, Liu M, Hu QJ, He M, Qi XH, Xu Q, et al. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.). Sci Rep. 2015;5:9645.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu T, Qin ZW, Zhou XY, Feng Z, Du YL. Transcriptome profile analysis of floral sex determination in cucumber. J Plant Physiol. 2010;167(11):905–13.
Article
CAS
PubMed
Google Scholar
Mach J. Unpureeing the tomato: layers of information revealed by microdissection and high-throughput transcriptome sequencing. Plant Cell. 2011;23(11):3668.
Article
Google Scholar
Zhang CS, Zhang HW, Zhan ZX, Liu BJ, Chen ZT, Liang Y. Transcriptome analysis of sucrose metabolism during bulb swelling and development in onion (Allium cepa L.). Front. Plant Sci. 2016;7:1425.
Google Scholar
Ruegger M, Meyer K, Cusumano JC, Chapple C. Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiol. 1999;119(1):101–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ando K, Grumet R. Transcriptional profiling of rapidly growing cucumber fruit by 454-pyrosequencing analysis. J Am Soc Hortic Sci. 2010;135(4):291–302.
Google Scholar
Tang XF, Tang ZZ, Huang SX, Liu JK, Liu J, Shi W, et al. Whole transcriptome sequencing reveals genes involved in plastid/chloroplast division and development are regulated by the HP1/DDB1 at an early stage of tomato fruit development. Planta. 2013;238(5):923–36.
Article
CAS
PubMed
Google Scholar
Liu SJ, Song SH, Wang WQ, Song SQ. De novo assembly and characterization of germinating lettuce seed transcriptome using Illumina paired-end sequencing. Plant physiol bioch. 2015;96:154–62.
Article
CAS
Google Scholar
Yin DM, Wang Y, Zhang XG, Li HM, Lu X, Zhang JS, et al. De novo assembly of the peanut (Arachis hypogaea L.) seed transcriptome revealed candidate unigenes for oil accumulation pathways. PLoS One. 2013;8(9):UNSP e73767.
Article
Google Scholar
Wang HQ, Arakawa O, Motomura Y. Influence of maturity and bagging on the relationship between anthocyanin accumulation and phenylalanine ammonia-lyase (PAL) activity in 'Jonathan' apples. Postharvest Biol Tec. 2000;19(2):123–8.
Article
CAS
Google Scholar
Maud L, Venkataramaiah M, James MC, Michel R, Dominique C, Nathalie C, et al. Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae). Planta. 2012;236(1):313–26.
Article
Google Scholar
Kao YY, Harding SA, Tsai CJ. Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol. 2002;130(2):796–807.
Article
PubMed
PubMed Central
Google Scholar
Okuda T. Systematics and health effects of chemically distinct tannins in medicinal plants. Phytochemistry. 2005;66(17):2012–31.
Article
CAS
PubMed
Google Scholar
Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54(1):519–46.
Article
CAS
PubMed
Google Scholar