Brinsmade SR. CodY, a master integrator of metabolism and virulence in gram-positive bacteria. Curr Genet. 2017;63:417–25.
Article
PubMed
CAS
Google Scholar
Stenz L, Francois P, Whiteson K, Wolz C, Linder P, Schrenzel J. The CodY pleiotropic repressor controls virulence in gram-positive pathogens. FEMS Immunol Med Microbiol. 2011;62:123–39.
Article
PubMed
CAS
Google Scholar
Sonenshein AL. CodY, a global regulator of stationary phase and virulence in gram-positive bacteria. Curr Opin Microbiol. 2005;8:203–7.
Article
PubMed
CAS
Google Scholar
Levdikov VM, Blagova E, Joseph P, Sonenshein AL, Wilkinson AJ. The structure of CodY, a GTP- and isoleucine-responsive regulator of stationary phase and virulence in gram-positive bacteria. J Biol Chem. 2006;281:11366–73.
Article
PubMed
CAS
Google Scholar
Joseph P, Ratnayake-Lecamwasam M, Sonenshein AL. A region of Bacillus subtilis CodY protein required for interaction with DNA. J Bacteriol. 2005;187:4127–39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Handke LD, Shivers RP, Sonenshein AL. Interaction of Bacillus subtilis CodY with GTP. J Bacteriol. 2008;190:798–806.
Article
PubMed
CAS
Google Scholar
Ratnayake-Lecamwasam M, Serror P, Wong KW, Sonenshein AL. Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev. 2001;15:1093–103.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shivers RP, Sonenshein AL. Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol Microbiol. 2004;53:599–611.
Article
PubMed
CAS
Google Scholar
Villapakkam AC, Handke LD, Belitsky BR, Levdikov VM, Wilkinson AJ, Sonenshein AL. Genetic and biochemical analysis of the interaction of Bacillus subtilis CodY with branched-chain amino acids. J Bacteriol. 2009;191:6865–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guedon E, Serror P, Ehrlich SD, Renault P, Delorme C. Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis. Mol Microbiol. 2001;40:1227–39.
Article
PubMed
CAS
Google Scholar
Lemos JA, Nascimento MM, Lin VK, Abranches J, Burne RA. Global regulation by (p)ppGpp and CodY in Streptococcus mutans. J Bacteriol. 2008;190:5291–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hendriksen WT, Bootsma HJ, Estevao S, Hoogenboezem T, de Jong A, de Groot R, Kuipers OP, Hermans PW. CodY of Streptococcus pneumoniae: link between nutritional gene regulation and colonization. J Bacteriol. 2008;190:590–601.
Article
PubMed
CAS
Google Scholar
Han AR, Kang HR, Son J, Kwon DH, Kim S, Lee WC, Song HK, Song MJ, Hwang KY. The structure of the pleiotropic transcription regulator CodY provides insight into its GTP-sensing mechanism. Nucleic Acids Res. 2016;44:9483–93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Belitsky BR, Sonenshein AL. Genetic and biochemical analysis of CodY-binding sites in Bacillus subtilis. J Bacteriol. 2008;190:1224–36.
Article
PubMed
CAS
Google Scholar
den Hengst CD, van Hijum SA, Geurts JM, Nauta A, Kok J, Kuipers OP. The Lactococcus lactis CodY regulon: identification of a conserved cis-regulatory element. J Biol Chem. 2005;280:34332–42.
Article
PubMed
CAS
Google Scholar
Lobel L, Herskovits AA. Systems level analyses reveal multiple regulatory activities of CodY controlling metabolism, motility and virulence in Listeria monocytogenes. PLoS Genet. 2016;12:e1005870.
Article
PubMed
PubMed Central
CAS
Google Scholar
Slamti L, Lemy C, Henry C, Guillot A, Huillet E, Lereclus D. CodY regulates the activity of the virulence quorum sensor PlcR by controlling the import of the signaling peptide PapR in Bacillus thuringiensis. Front Microbiol. 2015;6:1501.
PubMed
Google Scholar
Golub LM, Borden SM, Kleinberg I. Urea content of gingival crevicular fluid and its relation to periodontal diseases in humans. J Periodontal Res. 1971;6:243–51.
Article
PubMed
CAS
Google Scholar
Burne RA, Marquis RE. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett. 2000;193:1–6.
Article
PubMed
CAS
Google Scholar
Chen YY, Burne RA. Analysis of Streptococcus salivarius urease expression using continuous chemostat culture. FEMS Microbiol Lett. 1996;135:223–9.
Article
PubMed
CAS
Google Scholar
Chen YY, Weaver CA, Burne RA. Dual functions of Streptococcus salivarius urease. J Bacteriol. 2000;182:4667–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang SC, Burne RA, Chen YY. The pH-dependent expression of the urease operon in Streptococcus salivarius is mediated by CodY. Appl Environ Microbiol. 2014;80:5386–93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
PubMed
CAS
Google Scholar
Alves LA, Nomura R, Mariano FS, Harth-Chu EN, Stipp RN, Nakano K, Mattos-Graner RO. CovR regulates Streptococcus mutans susceptibility to complement immunity and survival in blood. Infect Immun. 2016;84:3206–19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Churchward G. The two faces of Janus: virulence gene regulation by CovR/S in group a streptococci. Mol Microbiol. 2007;64:34–41.
Article
PubMed
CAS
Google Scholar
Landwehr-Kenzel S, Henneke P. Interaction of Streptococcus agalactiae and cellular innateiImmunity in colonization and disease. Front Immunol. 2014;5:519.
Article
PubMed
PubMed Central
CAS
Google Scholar
Federle MJ, Scott JR. Identification of binding sites for the group a streptococcal global regulator CovR. Mol Microbiol. 2002;43:1161–72.
Article
PubMed
CAS
Google Scholar
Kuhnert WL, Zheng G, Faustoferri RC, Quivey RG Jr. The F-ATPase operon promoter of Streptococcus mutans is transcriptionally regulated in response to external pH. J Bacteriol. 2004;186:8524–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu WW, Wang Y, Wang T, Kong J. The global regulator CodY in Streptococcus thermophilus controls the metabolic network for escalating growth in the milk environment. Appl Environ Microbiol. 2015;81:2349–58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang SC, Chen YY. Role of VicRKX and GlnR in pH-dependent regulation of the Streptococcus salivarius 57.I urease operon. mSphere. 2016;1:e00033–16.
PubMed
PubMed Central
Google Scholar
Kreth J, Chen Z, Ferretti J, Malke H. Counteractive balancing of transcriptome expression involving CodY and CovRS in Streptococcus pyogenes. J Bacteriol. 2011;193:4153–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yoshimura G, Komatsuzawa H, Hayashi I, Fujiwara T, Yamada S, Nakano Y, Tomita Y, Kozai K, Sugai M. Identification and molecular characterization of an N-acetylmuraminidase, Aml, involved in Streptococcus mutans cell separation. Microbiol Immunol. 2006;50:729–42.
Article
PubMed
CAS
Google Scholar
Bose JL, Lehman MK, Fey PD, Bayles KW. Contribution of the Staphylococcus aureus Atl AM and GL murein hydrolase activities in cell division, autolysis, and biofilm formation. PLoS One. 2012;7:e42244.
Article
PubMed
PubMed Central
CAS
Google Scholar
Layec S, Gerard J, Legue V, Chapot-Chartier MP, Courtin P, Borges F, Decaris B, Leblond-Bourget N. The CHAP domain of Cse functions as an endopeptidase that acts at mature septa to promote Streptococcus thermophilus cell separation. Mol Microbiol. 2009;71:1205–17.
Article
PubMed
CAS
Google Scholar
Ahn SJ, Rice KC, Oleas J, Bayles KW, Burne RA. The Streptococcus mutans Cid and Lrg systems modulate virulence traits in response to multiple environmental signals. Microbiol. 2010;156:3136–47.
Article
CAS
Google Scholar
Sharma-Kuinkel BK, Mann EE, Ahn JS, Kuechenmeister LJ, Dunman PM, Bayles KW. The Staphylococcus aureus LytSR two-component regulatory system affects biofilm formation. J Bacteriol. 2009;191:4767–75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim JN, Burne RA. CcpA and CodY coordinate acetate metabolism in Streptococcus mutans. Appl Environ Microbiol. 2017;83:e03274–16.
PubMed
PubMed Central
CAS
Google Scholar
Santiago B, MacGilvray M, Faustoferri RC, Quivey RG Jr. The branched-chain amino acid aminotransferase encoded by ilvE is involved in acid tolerance in Streptococcus mutans. J Bacteriol. 2012;194:2010–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Santiago B, Marek M, Faustoferri RC, Quivey RG Jr. The Streptococcus mutans aminotransferase encoded by ilvE is regulated by CodY and CcpA. J Bacteriol. 2013;195:3552–62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fozo EM, Quivey RG Jr. The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol. 2004;186:4152–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fozo EM, Quivey RG Jr. Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl Environ Microbiol. 2004;70:929–36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Y, He HY, Li HH, Lu WW, Guo TT, Kong J. The global regulator CodY responds to oxidative stress by the regulation of glutathione biosynthesis in Streptococcus thermophilus. J Dairy Sci. 2017;100:8768–75.
Article
PubMed
CAS
Google Scholar
Hajaj B, Yesilkaya H, Shafeeq S, Zhi X, Benisty R, Tchalah S, Kuipers OP, Porat N. CodY regulates thiol peroxidase expression as part of the pneumococcal defense mechanism against H2O2 stress. Front Cell Infect Microbiol. 2017;7:210.
Article
PubMed
PubMed Central
Google Scholar
VanderWal AR, Makthal N, Pinochet-Barros A, Helmann JD, Olsen RJ, Kumaraswami M. Iron efflux by PmtA is critical for oxidative stress resistance and contributes significantly to group a Streptococcus virulence. Infect Immun. 2017;85:e00091–17.
Article
PubMed
PubMed Central
Google Scholar
Ricci S, Janulczyk R, Bjorck L. The regulator PerR is involved in oxidative stress response and iron homeostasis and is necessary for full virulence of Streptococcus pyogenes. Infect Immun. 2002;70:4968–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamaguchi M, Terao Y, Kawabata S. Pleiotropic virulence factor - Streptococcus pyogenes fibronectin-binding proteins. Cell Microbiol. 2013;15:503–11.
Article
PubMed
CAS
Google Scholar
Foster TJ. The remarkably multifunctional fibronectin binding proteins of Staphylococcus aureus. Eur J Clin Microbiol Infect Dis. 2016;35:1923–31.
Article
PubMed
CAS
Google Scholar
Rubens CE, Heggen LM. Tn916 delta E: a Tn916 transposon derivative expressing erythromycin resistance. Plasmid. 1988;20:137–42.
Article
PubMed
CAS
Google Scholar
Lau PC, Sung CK, Lee JH, Morrison DA, Cvitkovitch DG. PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods. 2002;49:193–205.
Article
PubMed
CAS
Google Scholar
Perez-Casal J, Caparon MG, Scott JR. Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems. J Bacteriol. 1991;173:2617–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fontaine L, Boutry C, de Frahan MH, Delplace B, Fremaux C, Horvath P, Boyaval P, Hols P. A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J Bacteriol. 2010;192:1444–54.
Article
PubMed
CAS
Google Scholar
Sissons CH, Hancock EM, Perinpanayagam HE, Cutress TW. The bacteria responsible for ureolysis in artificial dental plaque. Arch Oral Biol. 1988;33:727–33.
Article
PubMed
CAS
Google Scholar
Chen YY, Weaver CA, Mendelsohn DR, Burne RA. Transcriptional regulation of the Streptococcus salivarius 57.I urease operon. J Bacteriol. 1998;180:5769–75.
PubMed
PubMed Central
CAS
Google Scholar
Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, Kazanov MD, Riehl W, Arkin AP, Dubchak I, Rodionov DA. RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genomics. 2013;14:745.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server issue):W202–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen YY, Chen YY, Hung JL, Chen PM, Chia JS. The GlnR regulon in Streptococcus mutans is differentially regulated by GlnR and PmrA. PLoS One. 2016;11:e0159599.
Article
PubMed
PubMed Central
CAS
Google Scholar
O'Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol. 1998;28:449–61.
Article
PubMed
CAS
Google Scholar
Loo CY, Corliss DA, Ganeshkumar N. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol. 2000;182:1374–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Belli WA, Marquis RE. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol. 1991;57:1134–8.
PubMed
PubMed Central
CAS
Google Scholar
Abranches J, Miller JH, Martinez AR, Simpson-Haidaris PJ, Burne RA, Lemos JA. The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun. 2011;79:2277–84.
Article
PubMed
PubMed Central
CAS
Google Scholar