Clements LD, Miller BS, Streips UN. Comparative growth analysis of the facultative anaerobes Bacillus subtilis, Bacillus licheniformis, and Escherichia coli. Syst Appl Microbiol. 2002;25(2):284–6.
Article
PubMed
CAS
Google Scholar
Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Baumer S, Henne A, Liesegang H, Merkl R, et al. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol. 2004;7(4):204–11.
Article
PubMed
CAS
Google Scholar
Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, de Leon AL, Xiang H, Gusti V, Clausen IG. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol. 2004;5(10):r77.
Article
PubMed
PubMed Central
Google Scholar
Fujinami S, Fujisawa M. Industrial applications of alkaliphiles and their enzymes--past, present and future. Environ Technol. 2010;31(8–9):845–56.
Article
PubMed
CAS
Google Scholar
Gosset G. Microbial production of industrial chemicals. Introduction. J Mol Microbiol Biotechnol. 2008;15(1):5–7.
Article
PubMed
CAS
Google Scholar
Erickson R. Industrial applications of the bacilli: a review and prospectus: Microbiology American Society for Microbiology, Washington, DC; 1976. p. 406–19.
De Almeida DG, Rita de Cássia F, JML S, Rufino RD, Santos VA, Banat IM, Sarubbo LA. Biosurfactants: promising molecules for petroleum biotechnology advances. Front Microbiol. 2016;7
Das P, Mukherjee S, Sen R. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol. 2008;104(6):1675–84.
Article
PubMed
CAS
Google Scholar
Perez KJ, dos Santos VJ, Lopes FC, Pereira JQ, dos Santos DM, Oliveira JS, Velho RV, Crispim SM, Nicoli JR, Brandelli A. Bacillus spp. isolated from puba as a source of biosurfactants and antimicrobial lipopeptides. Front Microbiol. 2017:8.
Gomaa EZ. Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey. Braz Arch Biol Technol. 2013;56(2):259–68.
Article
CAS
Google Scholar
El-Sheshtawy H, Aiad I, Osman M, Abo-ELnasr A, Kobisy A. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria. Egypt J Pet. 2015;24(2):155–62.
Article
Google Scholar
Bouizgarne B. Bacteria for plant growth promotion and disease management. In: Bacteria in agrobiology: disease management. Berlin: Springer; 2013. p. 15–47.
Neyra C, Atkinson L, Olubayi O, Sadasivan L, Zaurov D, Zappi E. Novel microbial technologies for the enhancement of plant growth and biocontrol of fungal diseases in crops. Cahiers Opt Méd. 1996;31:447–56.
Google Scholar
Lee JP, Lee S-W, Kim CS, Son JH, Song JH, Lee KY, Kim HJ, Jung SJ, Moon BJ. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol Control. 2006;37(3):329–37.
Article
Google Scholar
Kim JH, Lee SH, Kim CS, Lim EK, Choi KH, Kong HG, Kim DW, Lee SW, Moon BJ. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J Microbiol Biotechnol. 2007;17(3):438–44.
PubMed
Google Scholar
Joshi SJ, Al-Wahaibi YM, Al-Bahry SN, Elshafie AE, Al-Bemani AS, Al-Bahri A, Al-Mandhari MS. Production, characterization, and application of Bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Front Microbiol. 2016;7
Dunlap CA, Kwon SW, Rooney AP, Kim SJ. Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste. Int J Syst Evol Microbiol. 2015;65(10):3487–92.
Article
PubMed
CAS
Google Scholar
Dhakal R, Chauhan K, Seale RB, Deeth HC, Pillidge CJ, Powell IB, Craven H, Turner MS. Genotyping of dairy Bacillus licheniformis isolates by high resolution melt analysis of multiple variable number tandem repeat loci. Food Microbiol. 2013;34(2):344–51.
Article
PubMed
CAS
Google Scholar
Hoffmann K, Daum G, Koster M, Kulicke WM, Meyer-Rammes H, Bisping B, Meinhardt F. Genetic improvement of Bacillus licheniformis strains for efficient deproteinization of shrimp shells and production of high-molecular-mass chitin and chitosan. Appl Environ Microbiol. 2010;76(24):8211–21.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cai D, He P, Lu X, Zhu C, Zhu J, Zhan Y, Wang Q, Wen Z, Chen S. A novel approach to improve poly-gamma-glutamic acid production by NADPH regeneration in Bacillus licheniformis WX-02. Sci Rep. 2017;7:43404.
Article
PubMed
CAS
PubMed Central
Google Scholar
Qiu Y, Zhang J, Li L, Wen Z, Nomura CT, Wu S, Chen S. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol. Biotechnol Biofuels. 2016;9:117.
Article
PubMed
CAS
PubMed Central
Google Scholar
Borgmeier C, Bongaerts J, Meinhardt F. Genetic analysis of the Bacillus licheniformis degSU operon and the impact of regulatory mutations on protease production. J Biotechnol. 2012;159(1–2):12–20.
Article
PubMed
CAS
Google Scholar
Cimermancic P, Medema MH, Claesen J, Kurita K, Brown LCW, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell. 2014;158(2):412–21.
Article
PubMed
CAS
PubMed Central
Google Scholar
Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015;43(W1):W237–43.
Article
PubMed
CAS
PubMed Central
Google Scholar
Underwood SA, Buszko ML, Shanmugam KT, Ingram LO. Lack of protective osmolytes limits final cell density and volumetric productivity of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl Environ Microbiol. 2004;70(5):2734–40.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schwalbach MS, Keating DH, Tremaine M, Marner WD, Zhang Y, Bothfeld W, Higbee A, Grass JA, Cotten C, Reed JL, et al. Complex physiology and compound stress responses during fermentation of alkali-pretreated corn Stover hydrolysate by an Escherichia coli ethanologen. Appl Environ Microbiol. 2012;78(9):3442–57.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schroeter R, Hoffmann T, Voigt B, Meyer H, Bleisteiner M, Muntel J, Jurgen B, Albrecht D, Becher D, Lalk M, et al. Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges. PLoS One. 2013;8(11):e80956.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ngugi DK, Antunes A, Brune A, Stingl U. Biogeography of pelagic bacterioplankton across an antagonistic temperature–salinity gradient in the Red Sea. Mol Ecol. 2012;21(2):388–405.
Article
PubMed
CAS
Google Scholar
Nielsen J, Archer J, Essack M, Bajic VB, Gojobori T, Mijakovic I. Building a bio-based industry in the Middle East through harnessing the potential of the Red Sea biodiversity. Appl Microbiol Biotechnol. 2017;101(12):4837–51.
Article
PubMed
CAS
PubMed Central
Google Scholar
Al-Amoudi S, Essack M, Simões MF, Bougouffa S, Soloviev I, Archer JA, Lafi FF, Bajic VB. Bioprospecting Red Sea coastal ecosystems for Culturable microorganisms and their antimicrobial potential. Marine Drugs. 2016;14(9):165.
Article
CAS
PubMed Central
Google Scholar
Posfai G, Plunkett G 3rd, Feher T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, et al. Emergent properties of reduced-genome Escherichia coli. Science. 2006;312(5776):1044–6.
Article
PubMed
CAS
Google Scholar
Wang A, Ash GJ. Whole genome phylogeny of Bacillus by feature frequency profiles (FFP). Sci Rep. 2015;5:13644.
Article
PubMed Central
Google Scholar
Alcaraz LD, Moreno-Hagelsieb G, Eguiarte LE, Souza V, Herrera-Estrella L, Olmedo G. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics. 2010;11(1):332.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yeong M: BiG-SCAPE: exploring biosynthetic diversity through gene cluster similarity networks; 2016.
Kim E, Moore BS, Yoon YJ. Reinvigorating natural product combinatorial biosynthesis with synthetic biology. Nat Chem Biol. 2015;11(9):649–59.
Article
PubMed
CAS
PubMed Central
Google Scholar
May JJ, Wendrich TM, Marahiel MA. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem. 2001;276(10):7209–17.
Article
PubMed
CAS
Google Scholar
Madslien EH, Ronning HT, Lindback T, Hassel B, Andersson MA, Granum PE. Lichenysin is produced by most Bacillus licheniformis strains. J Appl Microbiol. 2013;115(4):1068–80.
PubMed
CAS
Google Scholar
Grangemard I, Wallach J, Maget-Dana R, Peypoux F. Lichenysin: a more efficient cation chelator than surfactin. Appl Biochem Biotechnol. 2001;90(3):199–210.
Article
PubMed
CAS
Google Scholar
Nerurkar AS. Structural and molecular characteristics of lichenysin and its relationship with surface activity. Adv Exp Med Biol. 2010;672:304–15.
Article
PubMed
CAS
Google Scholar
Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol. 2005;69(1):29.
Article
PubMed
CAS
Google Scholar
Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening J-W, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact. 2007;20(4):430–40.
Article
PubMed
CAS
Google Scholar
Vanittanakom N, Loeffler W, Koch U, Jung G. Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot. 1986;39(7):888–901.
Article
PubMed
CAS
Google Scholar
Konz D, Klens A, Schörgendorfer K, Marahiel MA. The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chem Biol. 1997;4(12):927–37.
Article
PubMed
CAS
Google Scholar
Johnson BA, Anker H, Meleney FL. Bacitracin: a new antibiotic produced by a member of the B. Subtilis group. Science. 1945;102(2650):376–7.
Article
PubMed
CAS
Google Scholar
Alvarez-Ordonez A, Begley M, Clifford T, Deasy T, Considine K, O'Connor P, Ross RP, Hill C. Investigation of the antimicrobial activity of Bacillus licheniformis strains isolated from retail powdered infant milk formulae. Probiotics Antimicrob Proteins. 2014;6(1):32–40.
Article
PubMed
CAS
Google Scholar
Meleney FL, Altemeier WA, Longacre AB, Pulaski EJ, Zintel HA. The results of the systemic administration of the antibiotic, bacitracin, in surgical infections: a preliminary report. Ann Surg. 1948;128(4):714.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gay DC, Gay G, Axelrod AJ, Jenner M, Kohlhaas C, Kampa A, Oldham NJ, Piel J, Keatinge-Clay AT. A close look at a ketosynthase from a trans-acyltransferase modular polyketide synthase. Structure. 2014;22(3):444–51.
Article
PubMed
CAS
PubMed Central
Google Scholar
Albertini AM, Caramori T, Scoffone F, Scotti C, Galizzi A. Sequence around the 159° region of the Bacillus subtilis genome: the pksX locus spans 33·6 kb. Microbiology. 1995;141(2):299–309.
Article
PubMed
CAS
Google Scholar
Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, et al. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol. 2006;188(11):4024–36.
Article
PubMed
CAS
PubMed Central
Google Scholar
Walsh CJ, Guinane CM, Hill C, Ross RP, O’Toole PW, Cotter PD. In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the human microbiome Project’s reference genome database. BMC Microbiol. 2015;15(1):183.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lee H, Kim HY. Lantibiotics, class I bacteriocins from the genus Bacillus. J Microbiol Biotechnol. 2011;21(3):229–35.
PubMed
CAS
Google Scholar
Willey JM, van der Donk WA. Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol. 2007;61:477–501.
Article
PubMed
CAS
Google Scholar
Gogarten JP, Doolittle WF, Lawrence JG. Prokaryotic evolution in light of gene transfer. Mol Biol Evol. 2002;19(12):2226–38.
Article
PubMed
CAS
Google Scholar
Hacker J, Kaper JB. Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol. 2000;54:641–79.
Article
PubMed
CAS
Google Scholar
Lawrence JG. Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol. 1999;2(5):519–23.
Article
PubMed
CAS
Google Scholar
Collins FW, O’Connor PM, O'Sullivan O, Rea MC, Hill C, Ross RP. Formicin–a novel broad-spectrum two-component lantibiotic produced by Bacillus paralicheniformis APC 1576. Microbiology. 2016;162(9):1662–71.
Article
PubMed
CAS
Google Scholar
Martirani L, Varcamonti M, Naclerio G, De Felice M. Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformi s. Microb Cell Factories. 2002;1(1):1.
Article
Google Scholar
Pattnaik P, Grover S, Batish VK. Effect of environmental factors on production of lichenin, a chromosomally encoded bacteriocin-like compound produced by Bacillus licheniformis 26L-10/3RA. Microbiol Res. 2005;160(2):213–8.
Article
PubMed
CAS
Google Scholar
Krumsiek J, Arnold R, Rattei T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics. 2007;23(8):1026–8.
Article
PubMed
CAS
Google Scholar
Sommer DD, Delcher AL, Salzberg SL, Pop M. Minimus: a fast, lightweight genome assembler. BMC Bioinformatics. 2007;8(1):64.
Article
PubMed
CAS
PubMed Central
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25(7):1043–55.
Article
PubMed
CAS
PubMed Central
Google Scholar
Alam I, Antunes A, Kamau AA, Kalkatawi M, Stingl U, Bajic VB. INDIGO–INtegrated data warehouse of MIcrobial GenOmes with examples from the red sea extremophiles. PLoS One. 2013;8(12):e82210.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC bioinformatics. 2010;11(1):119.
Article
PubMed
CAS
PubMed Central
Google Scholar
Minkin I, Patel A, Kolmogorov M, Vyahhi N, Pham S. Sibelia: a scalable and comprehensive synteny block generation tool for closely related microbial genomes. In: International Workshop on Algorithms in Bioinformatics: 2013. Berlin: Springer; 2013. p. 215–29.
Langille MG, Brinkman FS. IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics. 2009;25(5):664–5.
Article
PubMed
CAS
PubMed Central
Google Scholar
Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(W1):W16–21.
Article
PubMed
CAS
PubMed Central
Google Scholar
Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics. 2008;25(1):119–20.
Article
PubMed
CAS
PubMed Central
Google Scholar
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44(W1):W242–5.
Article
PubMed
CAS
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
PubMed
CAS
Google Scholar
Li L, Stoeckert CJ Jr, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178–89.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kelly S, Maini PK. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments. PLoS One. 2013;8(3):e58537.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol. 2015;32(10):2798–800.
Article
PubMed
CAS
PubMed Central
Google Scholar
Umarov RK, Solovyev VV. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS One. 2017;12(2):e0171410.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yangtse W, Zhou Y, Lei Y, Qiu Y, Wei X, Ji Z, Qi G, Yong Y, Chen L, Chen S. Genome sequence of Bacillus licheniformis WX-02. J Bacteriol. 2012;194(13):3561–2.
Article
PubMed
CAS
PubMed Central
Google Scholar
O'Hair JA, Li H, Thapa S, Scholz MB, Zhou S. Draft Genome Sequence of Bacillus licheniformis Strain YNP1-TSU Isolated from Whiterock Springs in Yellowstone National Park. Genome Announc. 2017;5(9):e01496–16.
Rachinger M, Volland S, Meinhardt F, Daniel R, Liesegang H. First Insights into the Completely Annotated Genome Sequence of Bacillus licheniformis Strain 9945A. Genome Announc. 2013;1(4):e00525–13.