Kendall C, Leonardi C, Hoffman P, Combs D. Intake and milk production of cows fed diets that differed in dietary neutral detergent fiber and neutral detergent fiber digestibility. J Dairy Sci. 2009;92(1):313–23.
Article
PubMed
CAS
Google Scholar
Wang JQ. Five key indicators of leading the direction of China dairy industry. Feed and Husbandry. 2011;4:003.
Google Scholar
Li XL, Wan LQ. Research progress on Medicago sativa silage technology [J]. Acta Pratac Sci. 2005;2:001.
Google Scholar
Pang Y, Liu Y, Li X, Wang K, Yuan H. Improving biodegradability and biogas production of corn Stover through sodium hydroxide solid state pretreatment. Energy Fuel. 2008;22(4):2761–6.
Article
CAS
Google Scholar
Zhao T, Li H. Study on ruminal degradation of mainly protein and fiber sources in dairy diets. Contemp Anim Husb. 2009;11:29–32.
Google Scholar
Wang B, Mao S, Yang H, Wu Y, Wang J, Li S, Shen Z, Liu J. Effects of alfalfa and cereal straw as a forage source on nutrient digestibility and lactation performance in lactating dairy cows. J Dairy Sci. 2014;97(12):7706–15.
Article
PubMed
CAS
Google Scholar
Sun HZ, Wang DM, Wang B, Wang JK, Liu HY, Guan le L, Liu JX. Metabolomics of four biofluids from dairy cows: potential biomarkers for milk production and quality. J Proteome Res. 2015;14(2):1287–98.
Article
PubMed
CAS
Google Scholar
Wang D, Liang G, Wang B, Sun H, Liu J, Guan LL. Systematic microRNAome profiling reveals the roles of microRNAs in milk protein metabolism and quality: insights on low-quality forage utilization. Sci Rep. 2016;6:21194.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12(2):87–98.
Article
PubMed
CAS
Google Scholar
Choi I, Bao H, Kommadath A, Hosseini A, Sun X, Meng Y, Stothard P, Plastow GS, Tuggle CK, Reecy JM, et al. Increasing gene discovery and coverage using RNA-seq of globin RNA reduced porcine blood samples. BMC Genomics. 2014;15:954.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ghazalpour A, Bennett B, Petyuk VA, Orozco L, Hagopian R, Mungrue IN, Farber CR, Sinsheimer J, Kang HM, Furlotte N, et al. Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet. 2011;7(6):e1001393.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang X, Zeng T, Zhang S, Zhang Y. Comparative proteomic and bioinformatic analysis of the effects of a high-grain diet on the hepatic metabolism in lactating dairy goats. PLoS One. 2013;8(11):e80698.
Article
PubMed
PubMed Central
Google Scholar
Huang S, Chen L, Te R, Qiao J, Wang J, Zhang W. Complementary iTRAQ proteomics and RNA-seq transcriptomics reveal multiple levels of regulation in response to nitrogen starvation in Synechocystis sp. PCC 6803. Mol BioSyst. 2013;9(10):2565–74.
Article
PubMed
CAS
Google Scholar
Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Paabo S, Mann M. Deep proteome and transcriptome mapping of a human cancer cell line. Mol Sys Biol011. 7:548.
Greco TM, Cristea IM. Proteomics tracing the footsteps of infectious disease. Mol Cell Proteomics. 2017;16(4 suppl 1):S5–S14.
Article
PubMed
PubMed Central
Google Scholar
Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7:3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Y, Lin B, Yang L. Comparative transcriptomic analysis of multiple cardiovascular fates from embryonic stem cells predicts novel regulators in human cardiogenesis. Sci Rep. 2015;5:9758.
Article
PubMed
PubMed Central
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 2012;7(3):562–78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.
Article
PubMed
CAS
Google Scholar
Meng Q, Hou L, Zhao Y, Huang X, Huang Y, Xia S, Gu W, Wang W. iTRAQ-based proteomic study of the effects of Spiroplasma eriocheiris on Chinese mitten crab Eriocheir sinensis hemocytes. Fish Shellfish Immunol. 2014;40(1):182–9.
Article
PubMed
CAS
Google Scholar
Kong Q, Tong Q, Lou D, Ding J, Zheng B, Chen R, Zhu X, Chen X, Dong K, Lu S. Quantitative proteomic analyses of Schistosoma japonicum in response to artesunate. Mol BioSyst. 2015;11(5):1400–9.
Article
PubMed
CAS
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;1(72):248–54.
Article
Google Scholar
Yang Y, Zheng N, Zhao X, Zhang Y, Han R, Ma L, Zhao S, Li S, Guo T, Wang J. Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis. J Proteome. 2015;116:34–43.
Article
CAS
Google Scholar
Sheng Q, Dai J, Wu Y, Tang H, Zeng R. BuildSummary: using a group-based approach to improve the sensitivity of peptide/protein identification in shotgun proteomics. J Proteome Res. 2012;11(3):1494–502.
Article
PubMed
CAS
Google Scholar
Zhu W, Fu Y, Wang B, Wang C, Ye JA, Wu YM, Liu JX. Effects of dietary forage sources on rumen microbial protein synthesis and milk performance in early lactating dairy cows. J Dairy Sci. 2013;96(3):1727–34.
Article
PubMed
CAS
Google Scholar
Long M, Zhao J, Li T, Tafalla C, Zhang Q, Wang X, Gong X, Shen Z, Li A. Transcriptomic and proteomic analyses of splenic immune mechanisms of rainbow trout (Oncorhynchus mykiss) infected by Aeromonas salmonicida subsp. salmonicida. J Proteome. 2015;122:41–54.
Article
CAS
Google Scholar
Qiao J, Huang S, Te R, Wang J, Chen L, Zhang W. Integrated proteomic and transcriptomic analysis reveals novel genes and regulatory mechanisms involved in salt stress responses in Synechocystis sp. PCC 6803. Appl Microbiol Biot. 2013;97(18):8253–64.
Article
CAS
Google Scholar
Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns D, Harte N, Lopez R, Apweiler R. The gene ontology annotation (goa) database: sharing knowledge in uniprot with gene ontology. Nucleic Acids Res. 2004;32(suppl 1):D262–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36(Database issue):D480–4.
PubMed
CAS
Google Scholar
Wool IG. The structure and function of eukaryotic ribosomes. Annu Rev Biochem. 1979;48(1):719–54.
Article
PubMed
CAS
Google Scholar
Wang B, Sun HZ, Xu NN, Zhu KJ, Liu JX. Amino acid utilization of lactating dairy cows when diets are changed from an alfalfa-based diet to cereal straw-based diets. Anim Feed Sci Tech. 2016;217:56–66.
Article
CAS
Google Scholar
Turashvili G, Bouchal J, Burkadze G, Kolar Z. Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology. 2006;73(5):213–23.
Article
PubMed
CAS
Google Scholar
Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell. 2005;16(4):1987–2002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bailey JP, Nieport KM, Herbst MP, Srivastava S, Serra RA, Horseman ND. Prolactin and transforming growth factor-beta signaling exert opposing effects on mammary gland morphogenesis, involution, and the Akt-forkhead pathway. Mol Endocrinol. 2004;18(5):1171–84.
Article
PubMed
CAS
Google Scholar
McManaman JL, Neville MC. Mammary physiology and milk secretion. Adv Drug Deliver Rev. 2003;55(5):629–41.
Article
CAS
Google Scholar
Nath S, Villadsen J. Oxidative phosphorylation revisited. Biotechnol Bioeng. 2015;112(3):429–37.
Article
PubMed
CAS
Google Scholar
Holtenius P, Holtenius K. New aspects of ketone bodies in energy metabolism of dairy cows: a review. Zentralblatt fur Veterinarmedizin Reihe A. 1996;43(10):579–87.
Article
PubMed
CAS
Google Scholar
Varnam GC, Jeacock MK, Shepherd DA. Hepatic ketone-body metabolism in developing sheep and pregnant ewes. Brit J Nutr. 1978;40(2):359–67.
Article
PubMed
CAS
Google Scholar
Graber M, Kohler S, Kaufmann T, Doherr MG, Bruckmaier RM, van Dorland HA. A field study on characteristics and diversity of gene expression in the liver of dairy cows during the transition period. J Dairy Sci. 2010;93(11):5200–15.
Article
PubMed
CAS
Google Scholar
Shennan D, Boyd C. The functional and molecular entities underlying amino acid and peptide transport by the mammary gland under different physiological and pathological conditions. J Mammary Gland Biol. 2014;19(1):19–33.
Article
CAS
Google Scholar
Wang B, Wu G, Zhou Z, Dai Z, Sun Y, Ji Y, Li W, Wang W, Liu C, Han F, et al. Glutamine and intestinal barrier function. Amino Acids. 2014:1–12.
Ferreira-Cerca S, Poll G, Gleizes PE, Tschochner H, Milkereit P. Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol Cell. 2005;20(2):263–75.
Article
PubMed
CAS
Google Scholar
Krieg UC, Johnson AE, Walter P. Protein translocation across the endoplasmic reticulum membrane: identification by photocross-linking of a 39-kD integral membrane glycoprotein as part of a putative translocation tunnel. J Cell Biol. 1989;109(5):2033–43.
Article
PubMed
CAS
Google Scholar
Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004;5(10):781–91.
Article
PubMed
CAS
Google Scholar
Vos MJ, Hageman J, Carra S, Kampinga HH. Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry. 2008;47(27):7001–11.
Article
PubMed
CAS
Google Scholar
Wang WA, Groenendyk J, Michalak M. Endoplasmic reticulum stress associated responses in cancer. BBA-Mol Cell Res. 2014;1843(10):2143–9.
CAS
Google Scholar
Furuya M, Funasaki M, Tani H, Sasai K. Identification of novel tumour-associated antigens in canine mammary gland tumour. Vet Comp Oncol. 2015;13(3):194–202.
Article
PubMed
CAS
Google Scholar
Yasuda K, Nakai A, Hatayama T, Nagata K. Cloning and expression of murine high molecular mass heat shock proteins, HSP105. J Biol Chem. 1995;270(50):29718–23.
Article
PubMed
CAS
Google Scholar
Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem. 1999;68(1):1015–68.
Article
PubMed
CAS
Google Scholar
Ciechanover A, Orian A, Schwartz AL. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays. 2000;22(5):442–51.
Article
PubMed
CAS
Google Scholar
Dye BT, Schulman BA. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct. 2007;36:131–50.
Article
PubMed
CAS
Google Scholar
Van Wijk SJ, Timmers HM. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 2010;24(4):981–93.
Article
PubMed
CAS
Google Scholar
Seedorf U, Ellinghaus P, Nofer JR. Sterol carrier protein-2. BBA-Mol Cell Biol L. 2000;1486(1):45–54.
Article
CAS
Google Scholar
Cherbavaz DB, Lee ME, Stroud RM, Koshland Jr DE. Active site water molecules revealed in the 2.1 Å resolution structure of a site-directed mutant of isocitrate dehydrogenase1. J Mol Biol. 2000;295(3):377–85.
Article
PubMed
CAS
Google Scholar
Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, Platt JM, DeMatteo RG, Simon MC, Thompson CB. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. P Nat Acad Sci USA. 2011;108(49):19611–6.
Article
Google Scholar
Thorpe C, Kim J. Structure and mechanism of action of the acyl-CoA dehydrogenases. FASEB J. 1995;9(9):718–25.
Article
PubMed
CAS
Google Scholar