De Ley P, Blaxter M. A new system for Nematoda: combining morphological characters with molecular trees, and translating clades into ranks and taxa. In: Cook R, Hunt DJ, editors. Nematology Monographs and Perspectives, vol. 2. Leiden-Boston: Brill; 2004. p. 633–53.
Google Scholar
Van Thiel PH, Kuipers FC, Roskman RT. A nematode parasitic to herring causing acute abdominal syndromes in man. Trop Geogr Med. 1960;12:97–113.
PubMed
CAS
Google Scholar
CDC [http://www.cdc.gov/parasites/anisakiasis/faqs.html].
Audicana MT, Kennedy MW. Anisakis simplex: from Obscure Infectious Worm to Inducer of Immune Hypersensitivity. Clin Microbiol Rev. 2008;21(2):360–79. table of contents
Article
PubMed
PubMed Central
CAS
Google Scholar
Montoro A, Perteguer MJ, Chivato T, Laguna R, Cuellar C. Recidivous acute urticaria caused by Anisakis simplex. Allergy. 1997;52(10):985–91.
Article
PubMed
CAS
Google Scholar
Audicana MT, Ansotegui IJ, de Corres LF, Kennedy MW. Anisakis simplex: dangerous--dead and alive? Trends Parasitol. 2002;18(1):20–5.
Article
PubMed
Google Scholar
Moneo I, Caballero ML, Gonzalez-Munoz M, Rodriguez-Mahillo AI, Rodriguez-Perez R, Silva A. Isolation of a heat-resistant allergen from the fish parasite Anisakis simplex. Parasitol Res. 2005;96(5):285–9.
Article
PubMed
Google Scholar
Audicana MT, Fernandez de Corres L, Munoz D, Fernandez E, Navarro JA, del Pozo MD. Recurrent anaphylaxis caused by Anisakis simplex parasitizing fish. J Allergy Clin Immunol. 1995;96(4):558–60.
Article
PubMed
CAS
Google Scholar
Caballero ML, Moneo I. Several allergens from Anisakis simplex are highly resistant to heat and pepsin treatments. Parasitol Res. 2004;93(3):248–51.
Article
PubMed
Google Scholar
Nieuwenhuizen N, Lopata AL, Jeebhay MF, Herbert DR, Robins TG, Brombacher F. Exposure to the fish parasite Anisakis causes allergic airway hyperreactivity and dermatitis. J Allergy Clin Immunol. 2006;117(5):1098–105.
Article
PubMed
CAS
Google Scholar
Shweiki E, Rittenhouse DW, Ochoa JE, Punja VP, Zubair MH, Baliff JP. Acute Small-Bowel Obstruction From Intestinal Anisakiasis After the Ingestion of Raw Clams; Documenting a New Method of Marine-to-Human Parasitic Transmission. Open Forum Infect Dis. 2014;(1, 2):ofu087.
Puente P, Anadon AM, Rodero M, Romaris F, Ubeira FM, Cuellar C. Anisakis simplex: the high prevalence in Madrid (Spain) and its relation with fish consumption. Exp Parasitol. 2008;118(2):271–4.
Article
PubMed
Google Scholar
Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008;121(4):847–852 e7.
Article
PubMed
CAS
Google Scholar
Radauer C, Nandy A, Ferreira F, Goodman RE, Larsen JN, Lidholm J, Pomes A, Raulf-Heimsoth M, Rozynek P, Thomas WR, et al. Update of the WHO/IUIS allergen nomenclature database based on analysis of allergen sequences. Allergy. 2014;69(4):413–9.
Article
PubMed
CAS
Google Scholar
Arcos SC, Ciordia S, Roberston L, Zapico I, Jimenez-Ruiz Y, Gonzalez-Munoz M, Moneo I, Carballeda-Sangiao N, Rodriguez-Mahillo A, Albar JP, et al. Proteomic profiling and characterization of differential allergens in the nematodes Anisakis simplex sensu stricto and A. Pegreffii. Proteomics. 2014;14(12):1547–68.
Article
PubMed
CAS
Google Scholar
Baird FJ, Su X, Aibinu I, Nolan MJ, Sugiyama H, Otranto D, Lopata AL, Cantacessi C. The Anisakis transcriptome provides a resource for fundamental and applied studies on allergy-causing parasites. PLoS Negl Trop Dis. 2016;10(7):e0004845.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hartwich G. Die Vorderarmstrukturen, das Exkretionssytem sowie der Kopfbau der Ascariden und ihre taxonomische Bedeutung. Wissenschaftliche Martin-Luther-Universitaet Halle-Wittenberg Mathematish Naturwissenschaftliche Reihe. 1954;3:1171–212.
Google Scholar
Hartwich G. Zur Systematik der Nematoden-Superfamilie Ascaridoidea. Zoologische Jahrbücher Abteilung für Systematik, Ökologie und Geographie der Tier. 1957;85:211–52.
Google Scholar
Fagerholm HP. Systematic implications of male caudal morphology in ascaridoid nematode parasites. Syst Parasitol. 1991;19(3):215–28.
Article
Google Scholar
Mattiucci S, Nascetti G. Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host–parasite co-evolutionary processes. In: Rollison S, editor. Advances in parasitology, vol. 66. London: Academic Press; 2004. p. 47–148.
Google Scholar
Umehara A, Kawakami Y, Ooi HK, Uchida A, Ohmae H, Sugiyama H. Molecular identification of Anisakis type I larvae isolated from hairtail fish off the coasts of Taiwan and Japan. Int J Food Microbiol. 2010;143(3):161–5.
Article
PubMed
CAS
Google Scholar
Martin-Sanchez J, Artacho-Reinoso ME, Diaz-Gavilan M, Valero-Lopez A. Structure of Anisakis simplex s.L. populations in a region sympatric for a. Pegreffii and A. Simplex s.S. Absence of reproductive isolation between both species. Mol Biochem Parasitol. 2005;141(2):155–62.
Article
PubMed
CAS
Google Scholar
Abollo E, Paggi L, Pascual S, D'Amelio S. Occurrence of recombinant genotypes of Anisakis simplex s.S. And Anisakis pegreffii (Nematoda: Anisakidae) in an area of sympatry. Infect Genet Evol. 2003;3(3):175–81.
Article
PubMed
CAS
Google Scholar
Mattiucci S, Cipriani P, Webb SC, Paoletti M, Marcer F, Bellisario B, Gibson DI, Nascetti G. Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. Sp. for a. Simplex sp. C (Nematoda: Anisakidae). J Parasitol. 2014;100(2):199–214.
Article
PubMed
CAS
Google Scholar
Mattiucci S, Nascetti G. Molecular systematics, phylogeny and ecology of anisakid nematodes of the genus Anisakis Dujardin, 1845: an update. Paraste. 2006;13(2):99–113.
Article
CAS
Google Scholar
Mattiucci S, Paoletti M, Webb SC. Anisakis nascettii n. Sp. (Nematoda: Anisakidae) from beaked whales of the southern hemisphere: morphological description, genetic relationships between congeners and ecological data. Syst Parasitol. 2009;74(3):199–217.
Article
PubMed
Google Scholar
Cavallero S, Nadler SA, Paggi L, Barros NB, D'Amelio S. Molecular characterization and phylogeny of anisakid nematodes from cetaceans from southeastern Atlantic coasts of USA, Gulf of Mexico, and Caribbean Sea. Parasitol Res. 2011;108(4):781–92.
Article
PubMed
Google Scholar
Nadler SA, D'Amelio S, Dailey MD, Paggi L, Siu S, Sakanari JA. Molecular phylogenetics and diagnosis of Anisakis, Pseudoterranova, and Contracaecum from northern Pacific marine mammals. J Parasitol. 2005;91(6):1413–29.
Article
PubMed
CAS
Google Scholar
Umehara A, Kawakami Y, Araki J, Uchida A. Molecular identification of the etiological agent of the human anisakiasis in Japan. Parasitol Int. 2007;56(3):211–5.
Article
PubMed
CAS
Google Scholar
Arizono N, Yamada M, Tegoshi T, Yoshikawa M. Anisakis simplex sensu stricto and Anisakis pegreffii: biological characteristics and pathogenetic potential in human anisakiasis. Foodborne Pathog Dis. 2012;9(6):517–21.
Article
PubMed
CAS
Google Scholar
Fumarola L, Monno R, Ierardi E, Rizzo G, Giannelli G, Lalle M, Pozio E. Anisakis pegreffi etiological agent of gastric infections in two Italian women. Foodborne Pathog Dis. 2009;6(9):1157–9.
Article
PubMed
Google Scholar
Mattiucci S, Paoletti M, Borrini F, Palumbo M, Palmieri RM, Gomes V, Casati A, Nascetti G. First molecular identification of the zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae) in a paraffin-embedded granuloma taken from a case of human intestinal anisakiasis in Italy. BMC Infect Dis. 2011;11:82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mattiucci S, Fazii P, De Rosa A, Paoletti M, Megna AS, Glielmo A, De Angelis M, Costa A, Meucci C, Calvaruso V, et al. Anisakiasis and gastroallergic reactions associated with Anisakis pegreffii infection, Italy. Emerg Infect Dis. 2013;19(3):496–9.
Article
PubMed
PubMed Central
Google Scholar
Valero A, Lopez-Cuello M, Benítez R, Adroher FJ. Anisakis spp. in European hake, Merluccius merluccius (L.) from the Atlantic off north-West Africa and the Mediterranean off southern Spain. Acta Parasitol. 2006;51:209–12.
Article
Google Scholar
Abattouy N, Valero A, Lozano J, Barón SD, Romero C, Martín-Sánchez J. Population genetic analysis of Anisakis simplex s.L. and Anisakis pegreffii (Nematoda, Anisakidae) from parapatric areas and their contact zone. Parasite Epidemiol Control. 2016;1(2):169–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Umehara A, Kawakami Y, Matsui T, Araki J, Uchida A. Molecular identification of Anisakis simplex sensu stricto and Anisakis pegreffii (Nematoda: Anisakidae) from fish and cetacean in Japanese waters. Parasitol Int. 2006;55(4):267–71.
Article
PubMed
CAS
Google Scholar
Iglesias L, Valero A, Adroher FJ. Some factors which influence the in vitro maintenance of Anisakis simplex (Nematoda). Folia Parasitol. 1997;44(4):297–301.
CAS
Google Scholar
Zhu XQ, Podolska M, Liu JS, Yu HQ, Chen HH, Lin ZX, Luo CB, Song HQ, Lin RQ. Identification of anisakid nematodes with zoonotic potential from Europe and China by single-strand conformation polymorphism analysis of nuclear ribosomal DNA. Parasitol Res. 2007;101(6):1703–7.
Article
PubMed
CAS
Google Scholar
D'Amelio S, Mathiopoulos KD, Santos CP, Pugachev ON, Webb SC, Picanco M, Paggi L. Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda: ascaridoidea) defined by polymerase-chain-reaction-based restriction fragment length polymorphism. Int J Parasitol. 2000;30(2):223–6.
Article
PubMed
CAS
Google Scholar
Nadler SA, Hudspeth DS. Phylogeny of the ascaridoidea (nematoda: ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. J Parasitol. 2000;86(2):380–93.
Article
PubMed
CAS
Google Scholar
Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2010;38(Database issue):D46–51.
Article
PubMed
CAS
Google Scholar
Thompson JD, et al. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hall T. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
CAS
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.
Article
PubMed
PubMed Central
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21.
Article
PubMed
CAS
Google Scholar
Rambaut A, Drummond AJ, Xie D, Baele G and Suchard MA. Tracer v1.6, 2013. Available from http://tree.bio.ed.ac.uk/software/tracer.
Base Space [http://basespace.illumina.com].
FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc].
Cutadapt MM. Removes Adapter Sequences From High-Throughput Sequencing Reads. EMBnetjournal. 2011;17(1)
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27(6):863–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28(8):1086–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18(5):821–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Assemblathon_Stats [http://korflab.ucdavis.edu/datasets/Assemblathon/Assemblathon2/Basic_metrics/assemblathon_stats.pl].
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
PubMed
CAS
Google Scholar
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, et al. The COG database: an updated version includes eukaryotes. BMC Bioinform. 2003;4:41.
Article
Google Scholar
Huntley RP, Sawford T, Mutowo-Meullenet P, Shypitsyna A, Bonilla C, Martin MJ, O'Donovan C. The GOA database: gene ontology annotation updates for 2015. Nucleic Acids Res. 2015;43:D1057–63.
Article
PubMed
CAS
Google Scholar
Bairoch A. The ENZYME database in 2000. Nucleic Acids Res. 2000;28(1):304–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 2009;37(Database issue):D211–5.
Article
PubMed
CAS
Google Scholar
Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16(6):276–7.
Article
PubMed
CAS
Google Scholar
OrfPredictor [http://proteomics.ysu.edu/tools/OrfPredictor.html].
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6.
Article
PubMed
CAS
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80.
Article
PubMed
CAS
Google Scholar
Kotera M, Hirakawa M, Tokimatsu T, Goto S, Kanehisa M. The KEGG databases and tools facilitating omics analysis: latest developments involving human diseases and pharmaceuticals. Methods Mol Biol. 2012;802:19–39.
Article
PubMed
CAS
Google Scholar
AMOS Package [http://sourceforge.net/projects/amos].
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Davidson NM, Oshlack A. Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014;15(7):410.
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
PubMed
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;Series B(57):289–300.
Google Scholar
Futami R, Munoz-Pomer L, Viu JM, Dominguez-Escriba L, Covelli L, Bernet GP, Sempere JM, Moya A, Llorens C. GPRO: The professional tool for management, functional analysis and annotation of omic sequences and databases. Biotechvana Bioinform: 2011-SOFT3. 2011;
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14.
Article
PubMed
PubMed Central
CAS
Google Scholar
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158–69.
Article
CAS
Google Scholar
P H P programming language [http://php.net].
MySQL [http://www.mysql.com].
Apache [http://www.apache.org].
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ernst S, Langer R, Cooney CL, Sasisekharan R. Enzymatic Degradation of GlycosaminogIycans. Crit Rev Biochem Mol Biol. 1995:30(5).
Shears SB, Ganapathi SB, Gokhale NA, et al. Defining Signal Transduction by Inositol Phosphates. In: Balla T, Wymann M, York JD, editors. Phosphoinositides II: The Diverse Biological Functions. Netherlands: Springer; 2012. p. 389–412.
Chapter
Google Scholar
Feng L, Shou Q, Butcher RA. Identification of a dTDP-rhamnose biosynthetic pathway that oscillates with the molting cycle in Caenorhabditis elegans. Biochem J. 2016;473(11):1507–21.
Article
PubMed
CAS
Google Scholar
Braeckman BP, Houthoofd K, Vanfleteren JR. Intermediary metabolism. In: WormBook, ed. The C. elegans Research Community, WormBook. https://doi.org/10.1895/wormbook.1.146.1. 2009 (http://www.wormbook.org).
Wolkow CA. Regulation of invertebrate longevity by inositol phosphate signaling. Advan Cell Aging Gerontol. 2003;12:27–46.
Article
CAS
Google Scholar
McElwee JJ, Schuster E, Blanc E, Thornton J, Gems D. Diapause-associated metabolic traits reiterated in long-lived daf-2 mutants in the nematode Caenorhabditis elegans. Mech Ageing Dev. 2006;127(5):458–72.
Article
PubMed
CAS
Google Scholar
Holt SJ, Riddle DL. SAGE surveys C. elegans carbohydrate metabolism: evidence for an anaerobic shift in the long-lived dauer larva. Mech Ageing Dev. 2003;124(7):779–800.
Article
PubMed
CAS
Google Scholar
Burnell AM, Houthoofd K, O'Hanlon K, Vanfleteren JR. Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans. Exp Gerontol. 2005;40(11):850–6.
Article
PubMed
CAS
Google Scholar
Gilabert A, Wasmuth JD. Unravelling parasitic nematode natural history using population genetics. Trends Parasitol. 2013;29(9):438–48.
Article
PubMed
Google Scholar
Cipriani P, Smaldone G, Acerra V, D'Angelo L, Anastasio A, Bellisario B, Palma G, Nascetti G, Mattiucci S. Genetic identification and distribution of the parasitic larvae of Anisakis pegreffii and Anisakis simplex (s. s.) in European hake Merluccius merluccius from the Tyrrhenian Sea and Spanish Atlantic coast: implications for food safety. Int J Food Microbiol. 2015;198:1–8.
Article
PubMed
Google Scholar
Karl H. Nematode larvae in fish on the German market: 20 years of consumer related research. Arch Leb. 2008;59:107–16.
Google Scholar
Karl H, Meyer C, Banneke S, Jark U, Feldhusen F. The abundance of nematode larvae Anisakis sp. in the flesh of fishes and possible post mortem migration. Arch Leb. 2002;53:118–20.
Google Scholar
Quiazon KM, Yoshinaga T, Ogawa K. Experimental challenge of Anisakis simplex sensu stricto and Anisakis pegreffii (Nematoda: Anisakidae) in rainbow trout and olive flounder. Parasitol Int. 2011;60(2):126–31.
Article
PubMed
Google Scholar
Smith JW. The abundance of Anisakis simplex L3 in the body-cavity and flesh of marine teleosts. Int J Parasitol. 1984;14:491–5.
Article
Google Scholar
Hauck AK. Occurrence and survival of the larval nematode Anisakis sp. in the flesh of fresh, frozen, brined, and smoked pacific herring, Clupea harengus pallasi. J Parasitol. 1977;63(3):515–9.
Article
PubMed
CAS
Google Scholar
Smith JW, Wootten R. Experimental studies on the migration of Anisakis sp. larvae (Nematoda: ascaridida) into the flesh of herring, Clupea harengus L. Int J Parasitol. 1975;5(2):133–6.
Article
PubMed
CAS
Google Scholar
CiprianI P, Acerra V, Bellisario B, Sbaraglia GL, Cheleschi R, Nascetti G, Mattiucci S. Larval migration of the zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae) in European anchovy, Engraulis encrasicolus: implications to seafood safety. Food Control. 2016;59:148–57.
Article
CAS
Google Scholar
Bahlool QZ, Skovgaard A, Kania PW, Buchmann K. Effects of excretory/secretory products from Anisakis simplex (Nematoda) on immune gene expression in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2013;35(3):734–9.
Article
PubMed
CAS
Google Scholar
Coscia MR, Oreste U. Presence of antibodies specific for proteins of Contracaecum osculatum (Rudolphi, 1908) in plasma of several Antarctic teleosts. Fish Shellfish Immunol. 1998;8:295–302.
Article
Google Scholar
Marsh DG. Allergens and the genetics of allergy. In: Sela III M, editor. The Antigens. New York: Academic Press; 1975. p. 271–350.
Chapter
Google Scholar
Lowenstein H. Quantitative immunoelectrophoretic methods as a tool for the analysis and isolation of allergens. Progress in Allergy. 1978;25:1–62.
PubMed
CAS
Google Scholar
Sellers JR. Myosins: a diverse superfamily. Biochim Biophys Acta. 2000;1496(1):3–22.
Article
PubMed
CAS
Google Scholar
Tsai LC, Peng HJ, Lee CS, Chao PL, Tang RB, Tsai JJ, Shen HD, Hung MW, Han SH. Molecular cloning and characterization of full-length cDNAs encoding a novel high-molecular-weight Dermatophagoides pteronyssinus mite allergen, Der p 11. Allergy. 2005;60(7):927–37.
Article
PubMed
CAS
Google Scholar
Jeong KY, Hong CS, Yong TS. Allergenic tropomyosins and their cross-reactivities. Protein Pept Lett. 2006;13(8):835–45.
Article
PubMed
CAS
Google Scholar
Rodriguez-Mahillo AI, Gonzalez-Munoz M, Gomez-Aguado F, Rodriguez-Perez R, Corcuera MT, Caballero ML, Moneo I. Cloning and characterisation of the Anisakis simplex allergen Ani s 4 as a cysteine-protease inhibitor. Int J Parasitol. 2007;37(8–9):907–17.
Article
PubMed
CAS
Google Scholar
Kobayashi Y, Ishizaki S, Shimakura K, Nagashima Y, Shiomi K. Molecular cloning and expression of two new allergens from Anisakis simplex. Parasitol Res. 2007;100(6):1233–41.
Article
PubMed
Google Scholar
Kobayashi Y, Shimakura K, Ishizaki S, Nagashima Y, Shiomi K. Purification and cDNA cloning of a new heat-stable allergen from Anisakis simplex. Mol Biochem Parasitol. 2007;155(2):138–45.
Article
PubMed
CAS
Google Scholar
Rodriguez-Perez R, Moneo I, Rodriguez-Mahillo A, Caballero ML. Cloning and expression of Ani s 9, a new Anisakis simplex allergen. Mol Biochem Parasitol. 2008;159(2):92–7.
Article
PubMed
CAS
Google Scholar
Caballero ML, Umpierrez A, Moneo I, Rodriguez-Perez R. Ani s 10, a new Anisakis simplex allergen: cloning and heterologous expression. Parasitol Int. 2011;60(2):209–12.
Article
PubMed
CAS
Google Scholar
Kobayashi Y, Kakemoto S, Shimakura K, Shiomi K. Molecular cloning and expression of a new major allergen, Ani s 14, from Anisakis simplex. Shokuhin Eiseigaku Zasshi. 2015;56(5):194–9.
Article
PubMed
CAS
Google Scholar
Carballeda-Sangiao N, Rodriguez-Mahillo AI, Careche M, Navas A, Caballero T, Dominguez-Ortega J, Jurado-Palomo J, Gonzalez-Munoz M. Ani s 11-like protein is a pepsin- and heat-resistant major allergen of Anisakis spp. and a valuable tool for Anisakis allergy component-resolved diagnosis. Int Arch Allergy Immunol. 2016;169(2):108–12.
Article
PubMed
CAS
Google Scholar
Arrieta I, del Barrio M, Vidarte L, del Pozo V, Pastor C, Gonzalez-Cabrero J, Cardaba B, Rojo M, Minguez A, Cortegano I, et al. Molecular cloning and characterization of an IgE-reactive protein from Anisakis simplex: Ani s 1. Mol Biochem Parasitol. 2000;107(2):263–8.
Article
PubMed
CAS
Google Scholar
Cuellar CG-FJ, Rodero M, Valls A, de Frutos C, Daschner A, Nieuwenhuizen N. La Hemoglobina de Anisakis simplex: factores que influyen sobre su reconcimiento. In: XVIII Congreso de la Sociedad Espanola de Parasitologia; 63% of patients allergenicity 2013; 2013.
Google Scholar
Helton da Costa Santiago SB, Ribeiro JMC, Nutman TB. Structural Differences between Human Proteins and Aero- and Microbial Allergens Define Allergenicity. PLoS One. 2012;7:e40552.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lopez I, Pardo MA. A phage display system for the identification of novel Anisakis simplex antigens. J Immunol Methods. 2011;373(1–2):247–51.
Article
PubMed
CAS
Google Scholar
Faeste CK, Jonscher KR, Dooper MM, Egge-Jacobsen W, Moen A, Daschner A, Egaas E, Christians U. Characterisation of potential novel allergens in the fish parasite Anisakis simplex. EuPA Open Proteom. 2014;4:140–55.
Article
PubMed
CAS
Google Scholar
Cavallero S, Lombardo F, Su X, Salvemini M, Cantacessi C, D'Amelio S. Tissue-specific transcriptomes of Anisakis simplex (sensu stricto) and Anisakis pegreffii reveal potential molecular mechanisms involved in pathogenicity. Parasit Vectors. 2018;11:31.
Article
PubMed
PubMed Central
Google Scholar
PARASITE Parasite risk assessment with integrated tools in EU fish production value chains (EU Grant agreement no.: 312068). https://cordis.europa.eu/result/rcn/189395_en.html.
Alonso-Gomez A, Moreno-Ancillo A, Lopez-Serrano MC, Suarez-de-Parga JM, Daschner A, Caballero MT, Barranco P, Cabanas R. Anisakis simplex only provokes allergic symptoms when the worm parasitises the gastrointestinal tract. Parasitol Res. 2004;93(5):378–84.
Article
PubMed
Google Scholar
Baeza ML, Rodriguez A, Matheu V, Rubio M, Tornero P, de Barrio M, Herrero T, Santaolalla M, Zubeldia JM. Characterization of allergens secreted by Anisakis simplex parasite: clinical relevance in comparison with somatic allergens. Clin Exp Allergy. 2004;34(2):296–302.
Article
PubMed
CAS
Google Scholar
Pascual CY, Crespo JF, San Martin S, Ornia N, Ortega N, Caballero T, Munoz-Pereira M, Martin-Esteban M. Cross-reactivity between IgE-binding proteins from Anisakis, German cockroach, and chironomids. Allergy. 1997;52(5):514–20.
Article
PubMed
CAS
Google Scholar
Guarneri F, Guarneri C, Benvenga S. Cross-reactivity of Anisakis simplex: possible role of Ani s 2 and Ani s 3. Int J Dermatol. 2007;46(2):146–50.
PubMed
CAS
Google Scholar