van Heyningen V, Williamson KA. PAX6 in sensory development. Hum Mol Genet. 2002;11:1161–7.
Article
CAS
Google Scholar
Collinson JM, Quinn JC, Hill RE, West JD. The roles of Pax6 in the cornea, retina, and olfactory epithelium of the developing mouse embryo. Dev Biol. 2003;255:303–12.
Article
CAS
Google Scholar
Grindley JC, Davidson DR, Hill RE. The role of Pax-6 in eye and nasal development. Development. 1995;121:1433–42.
CAS
PubMed
Google Scholar
Walther C, Guenet JL, Simon D, Deutsch U, Jostes B, Goulding MD, et al. Pax: a murine multigene family of paired box-containing genes. Genomics. 1991;11:424–34.
Article
CAS
Google Scholar
Macdonald R, Wilson SW. Distribution of Pax6 protein during eye development suggests discrete roles in proliferative and differentiated visual cells. Dev Genes Evol. 1997;206:363–9.
Article
CAS
Google Scholar
Makarenkova HP, Ito M, Govindarajan V, Faber SC, Sun L, McMahon G, et al. FGF10 is an inducer and Pax6 a competence factor for lacrimal gland development. Development. 2000;127:2563–72.
CAS
PubMed
Google Scholar
Sander M, Neubüser A, Kalamaras J, Ee HC, Martin GR, German MS. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev. 1997;11:1662–73.
Article
CAS
Google Scholar
St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature. 1997;387:406–9.
Article
CAS
Google Scholar
Walther C, Gruss P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development. 1991;113:1435–49.
CAS
PubMed
Google Scholar
Larsson LI, St-Onge L, Hougaard DM, Sosa-Pineda B, Gruss P. Pax 4 and 6 regulate gastrointestinal endocrine cell development. Mech Dev. 1998;79:153–9.
Article
CAS
Google Scholar
Jami A, Gadi J, Lee MJ, Kim EJ, Lee MJ, Jung HS, et al. Pax6 expressed in osteocytes inhibits canonical Wnt signaling. Mol Cells. 2013;35:305–12.
Article
CAS
Google Scholar
Hogan BL, Horsburgh G, Cohen J, Hetherington CM, Fisher G, Lyon MF. Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J Embryol Exp Morphol. 1986;97:95–110.
Hill R, Favor J, Hogan B, Ton CCT, Saunders GF, Hanson IM, et al. Mouse small eye results from mutations in a paired-like homeobox containing gene. Nature. 1991;354(6354):522–5.
Article
CAS
Google Scholar
Fujiwara M, Uchida T, Osumi-Yamashita N, Eto K. Uchida rat (rSey): a new mutant rat with craniofacial abnormalities resembling those of the mouse Sey mutant. Differentiation. 1994;57:31–8.
Article
CAS
Google Scholar
Stoykova A, Fritsch R, Walther C, Gruss P. Forebrain patterning defects in Small eye mutant mice. Development. 1996;122:3453–65.
Bel-Vialar S, Medevielle F, Pituello F. The on/off of Pax6 controls the tempo of neuronal differentiation in the developing spinal cord. Dev Biol. 2007;305:659–73.
Article
CAS
Google Scholar
Quinn JC, Molinek M, Martynoga BS, Zaki PA, Faedo A, Bulfone A, et al. Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism. Dev Biol. 2007;302:50–65.
Article
CAS
Google Scholar
Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P. Pax6 is required for the multipotent state of retinal progenitor cells. Cell. 2001;105:43–55.
Article
CAS
Google Scholar
Glaser T, Walton DS, Maas RL. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat Genet. 1992;2:232–9.
Article
CAS
Google Scholar
Jordan T, Hanson I, Zaletayev D, Hodgson S, Prosser J, Seawright A, et al. The human PAX6 gene is mutated in two patients with aniridia. Nat Genet. 1992;1:328–32. https://doi.org/10.1038/ng0892-328.
Article
CAS
PubMed
Google Scholar
Wen JH, Chen YY, Song SJ, Ding J, Gao Y, Hu QK, et al. Paired box 6 (PAX6) regulates glucose metabolism via proinsulin processing mediated by prohormone convertase 1/3 (PC1/3). Diabetologia. 2009;52:504–13.
Article
CAS
Google Scholar
Yasuda T, Kajimoto Y, Fujitani Y, Watada H, Yamamoto S, Watarai T, et al. PAX6 mutation as a genetic factor common to aniridia and glucose intolerance. Diabetes. 2002;51:224–30.
Article
CAS
Google Scholar
Schedl A, Ross A, Lee M, Engelkamp D, Rashbass P, Van Heyningen V, et al. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell. 1996;86:71–82.
Article
CAS
Google Scholar
Manuel M, Pratt T, Liu M, Jeffery G, Price DJ. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance. BMC Dev Biol. 2008;8:59. https://doi.org/10.1186/1471-213X-8-59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamaoka T, Yano M, Yamada T, Matsushita T, Moritani M, Ii S, et al. Diabetes and pancreatic tumours in transgenic mice expressing pa x 6. Diabetologia. 2000;43:332–9.
Article
CAS
Google Scholar
Aalfs CM, Fantes JA, Wenniger-Prick LJJM, Sluijter S, Hennekam RCM, Van Heyningen V, et al. Tandem duplication of 11p12-p13 in a child with borderline development delay and eye abnormalities: dose effect of the PAX6 gene product? Am J Med Genet. 1997;73:267–71.
Article
CAS
Google Scholar
Aradhya S, Smaoui N, Marble M, Lacassie Y. De novo duplication 11p13 involving the PAX6 gene in a patient with neonatal seizures, hypotonia, microcephaly, developmental disability and minor ocular manifestations. Am J Med Genet Part A. 2011;155:442–4.
Article
Google Scholar
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.
Article
CAS
Google Scholar
Schirle NT, Sheu-Gruttadauria J, MacRae IJ. Structural basis for microRNA targeting. Science (80- ). 2014;346:608–13. https://doi.org/10.1126/science.1258040.
Article
CAS
Google Scholar
Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40. https://doi.org/10.1038/nature09267.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14:475–88. https://doi.org/10.1038/nrm3611.
Article
CAS
PubMed
Google Scholar
Baek D, Villén J, Shin C, Camargo FD, Steven P, Bartel DP. The impact of microRNAs on protein output. Nature. 2009;455:64–71.
Article
Google Scholar
Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455:58–63.
Article
CAS
Google Scholar
Hon LS, Zhang Z. The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol. 2007;8:R166. https://doi.org/10.1186/gb-2007-8-8-r166.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grimson A, Farh KKH, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27:91–105.
Article
CAS
Google Scholar
Sætrom P, Heale BSE, Snøve O, Aagaard L, Alluin J, Rossi JJ. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res. 2007;35:2333–42.
Article
Google Scholar
Vo NK, Dalton RP, Liu N, Olson EN, Goodman RH. Affinity purification of microRNA-133a with the cardiac transcription factor, Hand2. Proc Natl Acad Sci. 2010;107:19231–6. https://doi.org/10.1073/pnas.1013162107.
Article
PubMed
Google Scholar
Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500. https://doi.org/10.1038/ng1536.
Article
CAS
PubMed
Google Scholar
Du L, Schageman JJ, Subauste MC, Saber B, Hammond SM, Prudkin L, et al. miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Mol Cancer Res. 2009;7:1234–43. https://doi.org/10.1158/1541-7786.MCR-08-0507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene. 2010;29:2302–8. https://doi.org/10.1038/onc.2010.34.
Article
CAS
PubMed
Google Scholar
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human MicroRNA targets. PLoS Biol. 2004;2:e363. https://doi.org/10.1371/journal.pbio.0020363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaspi H, Chapnik E, Levy M, Beck G, Hornstein E, Soen Y. Brief report: MiR-290-295 regulate embryonic stem cell differentiation propensities by repressing Pax6. Stem Cells. 2013;31:2266–72.
Article
CAS
Google Scholar
Du Z-W, Ma L-X, Phillips C, Zhang S-C. miR-200 and miR-96 families repress neural induction from human embryonic stem cells. Development. 2013;140:2611–8. https://doi.org/10.1242/dev.092809.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shalom-Feuerstein R, Serror L, De La Forest DS, Petit I, Aberdam E, Camargo L, et al. Pluripotent stem cell model reveals essential roles for miR-450b-5p and miR-184 in embryonic corneal lineage specification. Stem Cells. 2012;30:898–909.
Article
CAS
Google Scholar
Needhamsen M, White RB, Giles KM, Dunlop SA, Thomas MG. Regulation of human PAX6 expression by miR-7. Evol Bioinforma. 2014;10:107–13.
Article
CAS
Google Scholar
Kredo-Russo S, Mandelbaum AD, Ness A, Alon I, Lennox KA, Behlke MA, et al. Pancreas-enriched miRNA refines endocrine cell differentiation. Development. 2012;139:3021–31. https://doi.org/10.1242/dev.080127.
Article
CAS
PubMed
Google Scholar
de Chevigny A, Coré N, Follert P, Gaudin M, Barbry P, Béclin C, et al. miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons. Nat Neurosci. 2012;15:1120–6. https://doi.org/10.1038/nn.3142.
Article
CAS
PubMed
Google Scholar
Zhao X, Wu J, Zheng M, Gao F, Ju G. Specification and maintenance of oligodendrocyte precursor cells from neural progenitor cells: involvement of microRNA-7a. Mol Biol Cell. 2012;23:2867–77. https://doi.org/10.1091/mbc.E12-04-0270.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39:1278–84. https://doi.org/10.1038/ng2135.
Article
CAS
PubMed
Google Scholar
Agarwal V, Bell GW, Nam J, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. elife. 2015;4:1–38.
Article
Google Scholar
Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ. miRBase: Tools for microRNA genomics. Nucleic Acids Res. 2008;36(SUPPL. 1):154–8.
Google Scholar
Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, et al. Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics. 2009;10:295. https://doi.org/10.1186/1471-2105-10-295.
Article
CAS
PubMed
PubMed Central
Google Scholar
Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: Targets and expression. Nucleic Acids Res. 2008;36(SUPPL. 1):149–53.
Google Scholar
Ryan BC, Werner TS, Howard PL, Chow RL. ImiRP: a computational approach to microRNA target site mutation. BMC Bioinformatics. 2016;17:190. https://doi.org/10.1186/s12859-016-1057-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, et al. The UCSC genome browser database: update 2011. Nucleic Acids Res. 2011;39(SUPPL. 1):1–7.
Google Scholar
Frohman MA. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol. 1993;24:340–56.
Article
Google Scholar
Jurica MS, Licklider LJ, Gygi SR, Grigorieff N, Moore MJ. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA. 2002;8:426–39. https://doi.org/10.1017/S1355838202021088.
Article
CAS
PubMed
PubMed Central
Google Scholar
Golding I, Cox EC. RNA dynamics in live Escherichia coli cells. Proc Natl Acad Sci. 2004;101:11310–5. https://doi.org/10.1073/pnas.0404443101.
Article
CAS
PubMed
Google Scholar
Zhou Z, Licklider LJ, Gygi SP, Reed R. Comprehensive proteomic analysis of the human spliceosome. Nature. 2002;419:182–5. https://doi.org/10.1038/nature01031.
Article
CAS
PubMed
Google Scholar
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. https://doi.org/10.1186/1471-2105-13-134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:45e–45. https://doi.org/10.1093/nar/29.9.e45.
Article
Google Scholar
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8:R19. https://doi.org/10.1186/gb-2007-8-2-r19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Proudfoot NJ. Ending the message: poly(a) signals then and now. Genes Dev. 2011;25:1770–82.
Article
CAS
Google Scholar
Ji Z, Lee JY, Pan Z, Jiang B, Tian B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci. 2009;106:7028–33. https://doi.org/10.1073/pnas.0900028106.
Article
PubMed
Google Scholar
Mangone M, Manoharan AP, Thierry-mieg D, Thierry J, Han T, Mackowiak SD, et al. The landscape of C. elegans 3 prime UTRs. Science (80- ). 2010;329:432–5. https://doi.org/10.1126/science.1191244.The.
Article
CAS
Google Scholar
Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455:1124–8. https://doi.org/10.1038/nature07299.
Article
CAS
PubMed
Google Scholar
Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets dicer within its coding sequence. Proc Natl Acad Sci. 2008;105:14879–84. https://doi.org/10.1073/pnas.0803230105.
Article
PubMed
Google Scholar
Elcheva I, Goswami S, Noubissi F, Spiegelman V. CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation. Mol Cell. 2009;35:240–6.
Article
CAS
Google Scholar
Clark PM, Loher P, Quann K, Brody J, Londin ER, Rigoutsos I. Argonaute CLIP-Seq reveals miRNA targetome diversity across tissue types. Sci Rep. 2014;4:1–11.
Google Scholar
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.
Article
CAS
Google Scholar
Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.
Article
CAS
Google Scholar
Chi SW, Hannon GJ, Darnell RB. An alternative mode of microRNA target recognition. Nat Struct Mol Biol. 2012;19:321–7. https://doi.org/10.1038/nsmb.2230.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellwanger DC, Büttner FA, Mewes HW, Stümpflen V. The sufficient minimal set of miRNA seed types. Bioinformatics. 2011;27:1346–50.
Article
CAS
Google Scholar
Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol. 2005;3:0404–18.
Article
CAS
Google Scholar
Didiano D, Hobert O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat Struct Mol Biol. 2006;13:849–51. https://doi.org/10.1038/nsmb1138.
Article
CAS
PubMed
Google Scholar
Xia Z, Clark P, Huynh T, Loher P, Zhao Y, Chen H-W, et al. Molecular dynamics simulations of ago silencing complexes reveal a large repertoire of admissible “seed-less” targets. Sci Rep. 2012;2:1–10.
Google Scholar
Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian MicroRNA targets. Cell. 2003;115:787–98. https://doi.org/10.1016/S0092-8674(03)01018-3.
Article
CAS
PubMed
Google Scholar
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006. https://doi.org/10.1101/gr.229102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozomara A, Griffiths-Jones S. MiRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:68–73.
Article
Google Scholar
Hamaguchi K, Leiter E. Comparison of cytokine effects on mouse pancreatic alpha-cell and beta-cell lines. Viability, secretory function, and MHC antigen expression. Diabetes. 1990;39:415–25.
Article
CAS
Google Scholar
Poitout V, Stout L, Armstrong M, Walseth T, Sorenson R, Robertson P. Morphological and functional characterization of βTC-6 cells—an insulin-secreting cell line derived from transgenic mice. Diabetes. 1995;44:306–13.
Article
CAS
Google Scholar
Yongblah K, Alford SC, Ryan BC, Chow RL, Howard PL. Protecting Pax6 3′ UTR from MicroRNA-7 Partially Restores PAX6 in Islets from an Aniridia Mouse Model. Mol Ther - Nucleic Acids. 2018;13:144–53. https://doi.org/10.1016/j.omtn.2018.08.018.
Article
PubMed
PubMed Central
Google Scholar
Mizusawa N, Hasegawa T, Ohigashi I, Tanaka-Kosugi C, Harada N, Itakura M, et al. Differentiation phenotypes of pancreatic islet β- and α-cells are closely related with homeotic genes and a group of differentially expressed genes. Gene. 2004;331:53–63.
Article
CAS
Google Scholar
Klein D, Misawa R, Bravo-Egana V, Vargas N, Rosero S, Piroso J, et al. MicroRNA expression in alpha and Beta cells of human pancreatic islets. PLoS One. 2013;8(1):e55064.
Article
CAS
Google Scholar
Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, MacDonald PE, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–30. https://doi.org/10.1038/nature03076.
Article
CAS
PubMed
Google Scholar
van de Bunt M, Gaulton KJ, Parts L, Moran I, Johnson PR, Lindgren CM, et al. The miRNA profile of human pancreatic islets and Beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One. 2013;8:1–7.
Article
Google Scholar
Bravo-Egana V, Rosero S, Molano RD, Pileggi A, Ricordi C, Domínguez-Bendala J, et al. Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem Biophys Res Commun. 2008;366:922–6.
Article
CAS
Google Scholar
Hackler L, Wan J, Swaroop A, Qian J, Zack DJ. MicroRNA profile of the developing mouse retina. Investig Ophthalmol Vis Sci. 2010;51:1823–31.
Article
Google Scholar
Karali M, Peluso I, Gennarino VA, Bilio M, Verde R, Lago G, et al. miRNeye: a microRNA expression atlas of the mouse eye. BMC Genomics. 2010;11:715. https://doi.org/10.1186/1471-2164-11-715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karali M, Peluso I, Marigo V, Banfi S. Identification and characterization of micrornas expressed in the mouse eye. Investig Ophthalmol Vis Sci. 2007;48:509–15.
Article
Google Scholar
Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem. 2007;282:25053–66.
Article
CAS
Google Scholar
Zhan M, Miller CP, Papayannopoulou T, Stamatoyannopoulos G, Song CZ. MicroRNA expression dynamics during murine and human erythroid differentiation. Exp Hematol. 2007;35:1015–25.
Article
CAS
Google Scholar
Hildebrand J, Rütze M, Walz N, Gallinat S, Wenck H, Deppert W, et al. A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo. J Invest Dermatol. 2011;131:20–9.
Article
CAS
Google Scholar
Wienholds E. MicroRNA Expression in Zebrafish Embryonic Development. Science (80- ). 2005;309:310–1. https://doi.org/10.1126/science.1114519.
Article
CAS
Google Scholar
Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, et al. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev. 2005;19:1288–93.
Article
CAS
Google Scholar
Moreau MP, Bruse SE, Jornsten R, Liu Y, Brzustowicz LM. Chronological changes in MicroRNA expression in the developing human brain. PLoS One. 2013;8(4):e60480.
Article
CAS
Google Scholar
Lin Y, Zeng Y, Zhang F, Xue L, Huang Z, Li W, et al. Characterization of MicroRNA expression profiles and the discovery of novel MicroRNAs involved in Cancer during human embryonic development. PLoS One. 2013;8:1–11.
Google Scholar
Wienholds E, Plasterk RHA. MicroRNA function in animal development. FEBS Lett. 2005;579:5911–22.
Article
CAS
Google Scholar
Shenoy A, Blelloch RH. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol. 2014;15:565–76. https://doi.org/10.1038/nrm3854.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braun J, Misiak D, Busch B, Krohn K, Hüttelmaier S. Rapid identification of regulatory microRNAs by miTRAP (miRNA trapping by RNA in vitro affinity purification). Nucleic Acids Res. 2014;42(8):e66.
Article
CAS
Google Scholar
Peabody DS. The RNA binding site of bacteriophage MS2 coat protein. EMBO J. 1993;12:595–600 http://www.ncbi.nlm.nih.gov/pubmed/8440248%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC413242.
Article
CAS
Google Scholar
Yoon JH, Srikantan S, Gorospe M. MS2-TRAP (MS2-tagged RNA affinity purification): tagging RNA to identify associated miRNAs. Methods. 2012;58:81–7. https://doi.org/10.1016/j.ymeth.2012.07.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhinge A, Namboori SC, Bithell A, Soldati C, Buckley NJ, Stanton LW. MiR-375 is essential for human spinal motor neuron development and may be involved in motor neuron degeneration. Stem Cells. 2016;34:124–34.
Article
CAS
Google Scholar
Dulcis D, Lippi G, Stark CJ, Do LH, Berg DK, Spitzer NC. Neurotransmitter Switching Regulated by miRNAs Controls Changes in Social Preference. Neuron. 2017;95:1319–1333.e5. https://doi.org/10.1016/j.neuron.2017.08.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinkraus BR, Toegel M, Fulga TA. Tiny giants of gene regulation: experimental strategies for microRNA functional studies. Wiley Interdiscip Rev Dev Biol. 2016;5:311–62.
Article
CAS
Google Scholar
Park CY, Choi Y, Mcmanus MT. Analysis of microRNA knockouts in mice.Pdf. Hum Mol Genet. 2010;19:R169–75.
Article
CAS
Google Scholar
Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 2007;3:2395–403.
Article
CAS
Google Scholar
Latreille M, Hausser J, Stutzer I, Zhang Q, Hastoy B, Gargani S, et al. MicroRNA-7a regulates pancreatic beta cell function. J Clin Invest. 2014;124:2722–35. https://doi.org/10.1172/JCI73066.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, et al. miR-375 maintains normal pancreatic - and -cell mass. Proc Natl Acad Sci. 2009;106:5813–8. https://doi.org/10.1073/pnas.0810550106.
Article
PubMed
Google Scholar
Pucella JN, Yen W-F, Kim MV, van der Veeken J, Socci ND, Naito Y, et al. miR-182 is largely dispensable for adaptive immunity: lack of correlation between expression and function. J Immunol. 2015;194:2635–42. https://doi.org/10.4049/jimmunol.1402261.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17:662–73. https://doi.org/10.1016/j.devcel.2009.10.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA. Science (80- ). 2007;316:575–9. https://doi.org/10.1126/science.1139089.
Article
CAS
Google Scholar
Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23:2166–78.
Article
CAS
Google Scholar
Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, et al. Targeted deletion reveals essential and overlapping functions of the miR-17∼92 family of miRNA clusters. Cell. 2008;132:875–86.
Article
CAS
Google Scholar
Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RHA. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 2007;5:1738–49.
Article
CAS
Google Scholar
Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol. 2007;311:603–12.
Article
CAS
Google Scholar
Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. RNA. 2009;15:287–93. https://doi.org/10.1261/rna.1211209.
Article
CAS
PubMed
PubMed Central
Google Scholar
El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulated glucose-induced biological responses in pancreatic beta-cells. Diabetes. 2008;57:2708–17.
Article
CAS
Google Scholar
Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic ??-islets. FEBS J. 2011;278:1167–74.
Article
CAS
Google Scholar
Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem. 2008;389:305–12.
Article
CAS
Google Scholar
Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD, Rivkin N, et al. miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. EMBO J. 2011;30:835–45. https://doi.org/10.1038/emboj.2010.361.
Article
CAS
PubMed
PubMed Central
Google Scholar