Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigó R. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012; 22:1775–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
St. Laurent G, Shtokalo D, Tackett MR, Yang Z, Eremina T, Wahlestedt C, Urcuqui-Inchima S, Seilheimer B, McCaffrey TA, Kapranov P. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics. 2012; 13:504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008; 320:1344–9. https://doi.org/10.1126/science.1158441.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Bakel H, Nislow C, Blencowe BJ, Hughes TR. Most “dark matter” transcripts are associated with known genes. PLoS Biol. 2010; 8:1000371.
Article
Google Scholar
Nitsche A, Rose D, Fasold M, Reiche K, Stadler PF. Comparison of splice sites reveals that long non-coding RNAs are evolutionarily well conserved. RNA. 2015; 21:801–12. https://doi.org/10.1261/rna.046342.114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seemann SE, Mirza AH, Hansen C, Bang-Berthelsen CH, Garde C, Christensen-Dalsgaard M, Torarinsson E, Yao Z, Workman CT, Pociot F, Nielsen H, Tommerup N, Ruzzo WL, Gorodkin J. The identification and functional annotation of RNA structures conserved in vertebrates. Genome Res. 2017; 27(8):1371–83. https://doi.org/10.1101/gr.208652.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pesole G, Mignone F, Gissi C, Grillo G, Licciulli F, Liuni S. Structural and functional features of eukaryotic mRNA untranslated regions. Gene. 2001; 276:73–81.
Article
CAS
PubMed
Google Scholar
Fontana W, Konings DAM, Stadler PF, Schuster P. Statistics of RNA secondary structures. Biopolymers. 1993; 33:1389–404.
Article
CAS
PubMed
Google Scholar
Schultes EA, Spasic A, Mohanty U, Bartel DP. Compact and ordered collapse of randomly generated RNA sequences. Nature Struct Mol Biol. 2005; 12:1130–6. https://doi.org/10.1038/nsmb1014.
Article
CAS
Google Scholar
Workman C, Krogh A. No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution. Nucleic Acids Res. 1999; 27(24):4816–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rivas E, Eddy SR. Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics. 2000; 16(7):583–605.
Article
CAS
PubMed
Google Scholar
Rivas E, Eddy SR. Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics. 2001; 2:8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Washietl S, Hofacker IL. Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. J Mol Biol. 2004; 342:19–30.
Article
CAS
PubMed
Google Scholar
Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, Lander ES, Kent J, Miller W, Haussler D. Identification and classification of conserved RNA secondary structures in the human genome. PLoS Comput Biol. 2006; 2:33.
Article
Google Scholar
Washietl S, Hofacker IL, Stadler PF. Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci USA. 2005; 102:2454–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gesell T, Washietl S. Dinucleotide controlled null models for comparative RNA gene prediction. BMC Bioinformatics. 2008; 9:248. https://doi.org/10.1186/1471-2105-9-248.
Article
PubMed
PubMed Central
Google Scholar
Yao Z, Weinberg Z, Ruzzo WL. CMfinder – a covariance model based RNA motif finding algorithm. Bioinformatics. 2006; 22:445–52.
Article
CAS
PubMed
Google Scholar
Torarinsson E, Yao Z, Wiklund ED, Bramsen JB, Hansen C, Kjems J, Tommerup N, Ruzzo WL, Gorodkin J. Comparative genomics beyond sequence-based alignments: RNA structures in the ENCODE regions. Genome Res. 2008; 18:242–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torarinsson E, Sawera M, Havgaard JH, Fredholm M, Gorodkin J. Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure. Genome Res. 2006; 16:885–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorodkin J, Hofacker IL. From structure prediction to genomic screens for novel non-coding RNAs. PLoS Comp Biol. 2011; 7:1002100. https://doi.org/10.1371/journal.pcbi.1002100.
Article
Google Scholar
Will S, Yu M, Berger B. Structure-based whole-genome realignment reveals many novel noncoding RNAs. Genome Res. 2013; 23:1018–27. https://doi.org/10.1101/gr.137091.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Behura SK. Insect microRNAs: Structure, function and evolution. Insect Biochem Mol Biol. 2007; 37:3–9.
Article
CAS
PubMed
Google Scholar
Piskol R, Stephan W. Selective constraints in conserved folded RNAs of drosophilid and hominid genomes. Mol Biol Evol. 2011; 28:1519–29. https://doi.org/10.1093/molbev/msq343.
Article
CAS
PubMed
Google Scholar
Juravleva EV, Mironov AA. The evolution of noncoding RNAs in the Drosophila melanogaster genome. Mol Biophys. 2015; 60:745. https://doi.org/10.1134/S0006350915050255.
Article
CAS
Google Scholar
Young RS, Marques AC, Tibbit C, Haerty W, Bassett AR, Liu JL, Ponting CP. Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome. Genome Biol Evol. 2012; 4:427–42. https://doi.org/10.1093/gbe/evs020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jenkins AM, Waterhouse RM, Muskavitch MAT. Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex. BMC Genomics. 2015; 16:337. https://doi.org/10.1186/s12864-015-1507-3.
Article
PubMed
PubMed Central
Google Scholar
Nyberg KG, Machado CA. Comparative expression dynamics of intergenic long noncoding RNAs (lncRNAs) in the genus Drosophila. Genome Biol Evol. 2016; 8:1839–58. https://doi.org/10.1093/gbe/evw116.
Article
PubMed
PubMed Central
Google Scholar
Zhong C, Andrews J, Zhang S. Discovering non-coding RNA elements in Drosophila 3’ untranslated regions. Int J Bioinform Res Appl. 2014; 10:479–97. https://doi.org/10.1504/IJBRA.2014.062996.
Article
CAS
PubMed
PubMed Central
Google Scholar
FlyBase. Drosophila melanogaster Annotation (FB2017_02, Genome Release r6.15). 2017. ftp://ftp.flybase.net/releases/FB2017_02/dmel_r6.15/fasta/. Accessed 8 June 2017.
Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattiuzzo NR, Miller D, Sturgill D, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammonds A, Jiang L, Kapranov P, Langton L, Perrimon N, Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J, Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hoskins RA, Kaufman TC, Oliver B, Celniker SE. The developmental transcriptome of Drosophila melanogaster. Nature. 2011; 471(7339):473–9. https://doi.org/10.1038/nature09715.
Article
CAS
PubMed
Google Scholar
Rose DR, Hackermüller J, Washietl S, Findeiß S, Reiche K, Hertel J, Stadler PF, Prohaska SJ. Computational RNomics of drosophilids. BMC Genomics. 2007; 8:406.
Article
PubMed
PubMed Central
Google Scholar
Smith MA, Gesell T, Stadler PF, Mattick JS. Widespread purifying selection on RNA structure in mammals. Nucleic Acids Res. 2013; 41:8220–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradley RK, Uzilov AV, Skinner ME, Bendaña YR, Barquist L, Holmes I. Evolutionary modeling and prediction of non-coding RNAs in Drosophila. PLoS ONE. 2009; 4:6478. https://doi.org/10.1371/journal.pone.0006478.
Article
Google Scholar
Findeiß S, Engelhardt J, Prohaska SP, Stadler PF. Protein-coding structured RNAs: A computational survey of conserved RNA secondary structures overlapping coding regions in drosophilids. Biochimie. 2011; 93:2019–23.
Article
PubMed
Google Scholar
Yao Z. Genome scale search of noncoding RNAs: Bacteria to vertebrates. 2008. PhD thesis, University of Washington, Seattle. Retrieved from http://bio.cs.washington.edu/yzizhen/uwthesis.pdf.
Seetharam AS, Stuart GW. Whole genome phylogeny for 21 Drosophila species using predicted 2b-RAD fragments. PeerJ. 2013; 1:226. https://doi.org/10.7717/peerj.226.
Article
Google Scholar
Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004; 14:1394–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frith MC, Hamada M, Horton P. Parameters for accurate genome alignment. BMC Bioinformatics. 2010; 11:80. https://doi.org/10.1186/1471-2105-11-80.
Article
PubMed
PubMed Central
Google Scholar
Reiche K, Stadler PF. RNAstrand: Reading direction of structured RNAs in multiple sequence alignments. Alg Mol Biol. 2007; 1:6.
Article
Google Scholar
Tyler DM, Okamura K, Chung WJ, Hagen JW, Berezikov E, Hannon GJ, Lai EC. Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. Genes Dev. 2008; 22:26–36. https://doi.org/10.1101/gad.1615208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hui JHL, Marco A, Hunt S, Melling J, Griffiths-Jones S, Ronshaugen M. Structure, evolution and function of the bi-directionally transcribed iab-4/iab-8 microRNA locus in arthropods. Nucleic Acids Res. 2013; 41:3352–61. https://doi.org/10.1093/nar/gks1445.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rearick D, Prakash A, McSweeny A, Shepard SS, Fedorova L, Fedorov A. Critical association of ncRNA with introns. Nucleic Acids Res. 2011; 39(6):2357–66.
Article
CAS
PubMed
Google Scholar
Maxwell ES, Fournier MJ. The small nucleolar RNAs. Ann Rev Biochem. 1995; 64:897–934.
Article
CAS
PubMed
Google Scholar
Shepard PJ, Hertel KJ. Conserved RNA secondary structures promote alternative splicing. RNA. 2008; 14:1463–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin Y, Yang Y, Zhang P. New insights into RNA secondary structure in the alternative splicing of pre-mRNAs. RNA Biol. 2011; 8:450–7. https://doi.org/10.4161/rna.8.3.15388.
Article
CAS
PubMed
Google Scholar
Pervouchine DD, Khrameeva EE, Pichugina MY, Nikolaenko OV, Gelfand MS, Rubtsov PM, Mironov AA. Evidence for widespread association of mammalian splicing and conserved long-range rna structures. RNA. 2012; 18:1–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin C-L, Taggart AJ, Fairbrother WG. RNA structure in splicing: An evolutionary perspective. RNA Biol. 2016; 13:766–71. https://doi.org/10.1080/15476286.2016.1208893.
Article
PubMed
PubMed Central
Google Scholar
Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, Carlson JW, Crosby MA, Rasmussen MD, Roy S, Deoras AN, et al. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature. 2007; 450:219–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandmann T, Cohen SM. Identification of novel Drosophila melanogaster microRNAs. PLoS ONE. 2007; 2:1265.
Article
Google Scholar
Washietl S, Pedersen JS, Korbel JO, Stocsits C, Gruber AR, Hackermüller J, Hertel J, Lindemeyer M, Reiche K, Tanzer A, Ucla C, Wyss C, Antonarakis SE, Denoeud F, Lagarde J, Drenkow J, Kapranov P, Gingeras TR, Guigó R, Snyder M, Gerstein MB, Reymond A, Hofacker IL, Stadler PF. Structured RNAs in the ENCODE selected regions of the human genome. Genome Res. 2007; 17:852–64. https://doi.org/10.1101/gr.5650707.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005; 15:1034–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cherbas L, Willingham A, Zhang D, Yang L, Zou Y, Eads BD, Carlson JW, Landolin JM, Kapranov P, Dumais J, Samsonova A, Choi J-H, Roberts J, Davis CA, Tang H, van Baren MJ, Ghosh S, Dobin A, Bell K, Lin W, Langton L, Duff MO, Tenney AE, Zaleski C, Brent MR, Hoskins RA, Kaufman TC, Andrews J, Graveley BR, Perrimon N, Celniker SE, Gingeras TR, Cherbas P. The transcriptional diversity of 25 Drosophila cell lines. Genome Res. 2011; 21(2):301–14. https://doi.org/10.1101/gr.112961.110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakaya HI, Amaral PP, Louro R, Lopes A, Fachel AA, Moreira YB, El-Jundi TA, da Silva AM, Reis EM, Verjovski-Almeida S. Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription. Genome Biol. 2007; 8:43.
Article
Google Scholar
Louro R, El-Jundi T, Nakaya HI, Reis EM, Verjovski-Almeida S. Conserved tissue expression signatures of intronic noncoding RNAs transcribed from human and mouse loci. Genomics. 2008; 92:18–25.
Article
CAS
PubMed
Google Scholar
St Laurent G, Shtokalo D, Tackett MR, Yang Z, Eremina T, Wahlestedt C, Urcuqui-Inchima S, Seilheimer B, McCaffrey TA, Kapranov P. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics. 2012; 13:504. https://doi.org/10.1186/1471-2164-13-504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engelhardt J, Stadler PF. Evolution of the unspliced transcriptome. BMC Evol Biol. 2015; 15:166. https://doi.org/10.1186/s12862-015-0437-7.
Article
PubMed
PubMed Central
Google Scholar
Hales KG, Christopher Korey A, Larracuente AM, Roberts DM. Genetics on the fly: A primer on the Drosophila model system. Genetics. 2015; 201:815–42. https://doi.org/10.1534/genetics.115.183392.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uhlik MT, Temple B, Bencharit S, Kimple AJ, Siderovski DP, Johnson GL. Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J Mol Biol. 2005; 345(1):1–20. https://doi.org/10.1016/j.jmb.2004.10.038.
Article
CAS
PubMed
Google Scholar
Kim S, Yu N-K, Kaang B-K. CTCF as a multifunctional protein in genome regulation and gene expression. Exp Mol Med. 2015; 47(6):166. https://doi.org/10.1038/emm.2015.33.
Article
Google Scholar
Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, Gueroussov S, Albu M, Zheng H, Yang A, Na H, Irimia M, Matzat LH, Dale RK, Smith SA, Yarosh CA, Kelly SM, Nabet B, Mecenas D, Li W, Laishram RS, Qiao M, Lipshitz HD, Piano F, Corbett AH, Carstens RP, Frey BJ, Anderson RA, Lynch KW, Penalva LOF, Lei EP, Fraser AG, Blencowe BJ, Morris QD, Hughes TR. A compendium of RNA-binding motifs for decoding gene regulation. Nature. 2013; 499(7457):172–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sugimoto Y, Vigilante A, Darbo E, Zirra A, Militti C, D’Ambrogio A, Luscombe NM, Ule J. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature. 2015; 519(7544):491–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murakawa Y, Hinz M, Mothes J, Schuetz A, Uhl M, Wyler E, Yasuda T, Mastrobuoni G, Friedel CC, Dolken L, Kempa S, Schmidt-Supprian M, Bluthgen N, Backofen R, Heinemann U, Wolf J, Scheidereit C, Landthaler M. RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-kappaB pathway. Nat Commun. 2015; 6:7367.
Article
CAS
PubMed
Google Scholar
Ilik IA, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D, Toscano S, Wan Y, Spitale RC, Luscombe N, Backofen R, Chang HY, Akhtar A. Tandem Stem-Loops in roX RNAs Act Together to Mediate X Chromosome Dosage Compensation in Drosophila. Mol Cell. 2013; 51(2):156–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kazan H, Ray D, Chan ET, Hughes TR, Morris Q. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins. PLoS Comput Biol. 2010; 6:1000832.
Article
Google Scholar
Heller D, Krestel R, Ohler U, Vingron M, Marsico A. ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data. Nucleic Acids Res; 45:11004–18. https://doi.org/10.1093/nar/gkx756.
Will S, Missal K, Hofacker IL, Stadler PF, Backofen R. Inferring non-coding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comp Biol. 2007; 3:65.
Article
Google Scholar
Miladi M, Junge A, Costa F, Seemann SE, Havgaard JH, Gorodkin J, Backofen R. RNAscClust: clustering RNA sequences using structure conservation and graph based motifs. Bioinformatics. 2017; 33(14):2089–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rfam. Rfam ncRNA annotations for Drosophila melanogaster (Rfam 12.2). 2016. ftp://ftp.ebi.ac.uk/pub/databases/Rfam/12.2/genome_browser_ hub/D_melanogaster/. Accessed 8 June 2017.
Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AFA, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, Haussler D, Miller W. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 2004; 14:708–15. https://doi.org/10.1101/gr.1933104.
Article
CAS
PubMed
PubMed Central
Google Scholar
UCSC Genome Browser. MULTIZ 27-way Insect Alignment. 2014. http://hgdownload.cse.ucsc.edu/goldenPath/dm6/multiz27way/. Accessed 28 Apr 2017.
UCSC Genome Browser. BDGP Release 6. 2014. ftp://hgdownload.cse.ucsc.edu/goldenPath/dm6/bigZips/. Accessed 3 June 2017.
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26:841–2. https://doi.org/10.1093/bioinformatics/btq033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krauss V, Dorn R. Evolution of the trans-splicing Drosophila locus mod(mdg4) in several species of Diptera and Lepidoptera. Gene. 2004; 331:165–76.
Article
CAS
PubMed
Google Scholar
The modENCODE Consortium. Identification of transcribed sequences with expression profile maps. 2012. http://intermine.modencode.org/release-32/experiment.do?experiment=Identification٪of٪transcribed٪sequences٪with٪expression٪profile٪maps. Accessed 21 June 2016.
FlyBase. FlyBase melanogaster gene OrthoDB ortholog report. 2014. ftp://ftp.flybase.net/releases/FB2014_06/precomputed_files/genes/gene_orthologs_fb_2014_06.tsv.gz. Accessed 14 Aug 2018.
National Center for Biotechnology Information (NCBI). NCBI Assembly. 2018. https://www.ncbi.nlm.nih.gov/assembly/. Accessed 24 June 2018.
Dreos R, Ambrosini G, Groux R, Périer RC, Bucher P. The eukaryotic promoter database in its 30th year: Focus on non-vertebrate organisms. Nucleic Acids Res. 2017; 45(D1):51–5. https://doi.org/10.1093/nar/gkw1069.
Article
Google Scholar
Kvon EZ, Kazmar T, Stampfel G, Yáñez-Cuna JO, Pagani M, Schernhuber K, Dickson BJ, Stark A. Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature. 2014; 512(7512):91–5. https://doi.org/10.1038/nature13395.
Article
CAS
PubMed
Google Scholar
Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL. ViennaRNA Package 2.0. Algoritm Mol Biol. 2011; 6(1):26–39. https://doi.org/10.1186/1748-7188-6-26.
Article
Google Scholar
Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P. Fast folding and comparison of RNA secondary structures. Monatsh für Chem. 1994; 125(2):167–88. https://doi.org/10.1007/BF00818163.
Article
CAS
Google Scholar