Rochus CM, Tortereau F, Plisson-Petit F, Restoux G, Moreno-Romieux C, Tosser-Klopp G, Servin B. Revealing the selection history of adaptive loci using genome-wide scans for selection: an example from domestic sheep. BMC Genomics. 2018;19(1):7.
Article
CAS
Google Scholar
Lv FH, Peng WF, Yang J, Zhao YX, Li WR, Liu MJ, Ma YH, Zhao QJ, Yang GL, Wang F, et al. Mitogenomic meta-analysis identifies two phases of migration in the history of eastern Eurasian sheep. Mol Biol Evol. 2015;32(10):2515–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao YX, Yang J, Lv FH, Hu XJ, Xie XL, Zhang M, Li WR, Liu MJ, Wang YT, Li JQ, et al. Genomic reconstruction of the history of native sheep reveals the peopling patterns of nomads and the expansion of early pastoralism in East Asia. Mol Biol Evol. 2017;34(9):2380–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeder MA. Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc Natl Acad Sci U S A. 2008;105(33):11597–604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Gamez E, Reverter A, Whan V, McWilliam SM, Arranz JJ, Kijas J, Consortium ISG. Using regulatory and epistatic networks to extend the findings of a genome scan: identifying the gene drivers of pigmentation in merino sheep. PLoS One. 2011;6(6):e21158.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR, San Cristobal M, Servin B, McCulloch R, Whan V, Gietzen K, et al. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012;10(2):e1001258.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fariello MI, Servin B, Tosser-Klopp G, Rupp R, Moreno C, San Cristobal M, Boitard S, Consortium ISG. Selection signatures in worldwide sheep populations. PLoS One. 2014;9(8):e103813.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moradi MH, Nejati-Javaremi A, Moradi-Shahrbabak M, Dodds KG, McEwan JC. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet. 2012;13:10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fleming-Waddell JN, Olbricht GR, Taxis TM, White JD, Vuocolo T, Craig BA, Tellam RL, Neary MK, Cockett NE, Bidwell CA. Effect of DLK1 and RTL1 but not MEG3 or MEG8 on muscle gene expression in Callipyge lambs. PLoS One. 2009;4(10):e7399.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moioli B, Scata MC, Steri R, Napolitano F, Catillo G. Signatures of selection identify loci associated with milk yield in sheep. BMC Genet. 2013;14:76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu ZH, Ji ZB, Wang GZ, Chao TL, Hou L, Wang JM. Genome-wide analysis reveals signatures of selection for important traits in domestic sheep from different ecoregions. BMC Genomics. 2016;17(1):863.
Article
PubMed
PubMed Central
CAS
Google Scholar
Demars J, Cano M, Drouilhet L, Plisson-Petit F, Bardou P, Fabre S, Servin B, Sarry J, Woloszyn F, Mulsant P, et al. Genome-wide identification of the mutation underlying fleece variation and discriminating ancestral hairy species from modern woolly sheep. Mol Biol Evol. 2017;34(7):1722–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mcrae KM, McEwan JC, Dodds KG, Gemmell NJ. Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. BMC Genomics. 2014;15:637.
Article
PubMed
PubMed Central
Google Scholar
Wollenberg Valero KC, Pathak R, Prajapati I, Bankston S, Thompson A, Usher J, Isokpehi RD. A candidate multimodal functional genetic network for thermal adaptation. PeerJ. 2014;2:e578.
Article
PubMed
PubMed Central
Google Scholar
Wei CH, Wang HH, Liu G, Zhao FP, Kijas JW, Ma YJ, Lu J, Zhang L, Cao JX, Wu MM, et al. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci Rep-Uk. 2016;6:26770.
Gorkhali NA, Dong KZ, Yang M, Song S, Kader A, Shrestha BS, He XH, Zhao QJ, Pu YB, Li XC, et al. Genomic analysis identified a potential novel molecular mechanism for high-altitude adaptation in sheep at the Himalayas. Sci Rep-Uk. 2016;6:29963.
Kim ES, Elbeltagy AR, Aboul-Naga AM, Rischkowsky B, Sayre B, Mwacharo JM, Rothschild MF. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity. 2016;116(3):255–64.
Article
CAS
PubMed
Google Scholar
Lv FH, Agha S, Kantanen J, Colli L, Stucki S, Kijas JW, Joost S, Li MH, Marsan PA. Adaptations to climate-mediated selective pressures in sheep. Mol Biol Evol. 2014;31(12):3324–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature. 2007;448(7150):204–8.
Article
CAS
PubMed
Google Scholar
Deniskova TE, Dotsev AV, Selionova MI, Kunz E, Medugorac I, Reyer H, Wimmers K, Barbato M, Traspov AA, Brem G, et al. Population structure and genetic diversity of 25 Russian sheep breeds based on whole-genome genotyping. Genet Sel Evol. 2018;50(1):29.
Article
PubMed
PubMed Central
Google Scholar
Muona M, Ishimura R, Laari A, Ichimura Y, Linnankivi T, Keski-Filppula R, Herva R, Rantala H, Paetau A, Poyhonen M, et al. Biallelic variants in UBA5 link dysfunctional UFM1 ubiquitin-like modifier pathway to severe infantile-onset encephalopathy. Am J Hum Genet. 2016;99(3):683–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuand K, Stijnen P, Volders K, Declercq J, Nuytens K, Meulemans S, Creemers J. Nuclear localization of the autism candidate gene Neurobeachin and functional interaction with the NOTCH1 intracellular domain indicate a role in regulating transcription. PLoS One. 2016;11(3):e0151954.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Z, Zhang H, Yang H, Wang S, Rong E, Pei W, Li H, Wang N. Genome-wide association study for wool production traits in a Chinese merino sheep population. PLoS One. 2014;9(9):e107101.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pan ZY, Li SD, Liu QY, Wang Z, Zhou ZK, Di R, Miao BP, Hu WP, Wang XY, Hu XX, et al. Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization. Gigascience. 2018;7(4). https://doi.org/10.1093/gigascience/giy019.
Allais-Bonnet A, Grohs C, Medugorac I, Krebs S, Djari A, Graf A, Fritz S, Seichter D, Baur A, Russ I, et al. Novel insights into the bovine polled phenotype and horn ontogenesis in Bovidae. PLoS One. 2013;8(5):e63512.
Article
PubMed
PubMed Central
Google Scholar
Habib AM, Matsuyama A, Okorokov AL, Santana-Varela S, Bras JT, Aloisi AM, Emery EC, Bogdanov YD, Follenfant M, Gossage SJ, et al. A novel human pain insensitivity disorder caused by a point mutation in ZFHX2. Brain. 2018;141:365–76.
Article
PubMed
Google Scholar
Klein CJ, Duan XH, Shy ME. Inherited neuropathies: clinical overview and update. Muscle Nerve. 2013;48(4):604–22.
Article
PubMed
PubMed Central
Google Scholar
Staud R, Price DD, Janicke D, Andrade E, Hadjipanayis AG, Eaton WT, Kaplan L, Wallace MR. Two novel mutations of SCN9A (Nav1.7) are associated with partial congenital insensitivity to pain. Eur J Pain. 2011;15(3):223–30.
Article
CAS
PubMed
Google Scholar
Potulska-Chromik A, Kabzinska D, Lipowska M, Kostera-Pruszczyk A, Kochanski A. A novel homozygous mutation in the WNK1/HSN2 gene causing hereditary sensory neuropathy type 2. Acta Biochim Pol. 2012;59(3):413–5.
Article
CAS
PubMed
Google Scholar
Brozkova DS, Deconinck T, Griffin LB, Ferbert A, Haberlova J, Mazanec R, Lassuthova P, Roth C, Pilunthanakul T, Rautenstrauss B, et al. Loss of function mutations in HARS cause a spectrum of inherited peripheral neuropathies. Brain. 2015;138:2161–72.
Article
Google Scholar
Heimer G, Oz-Levi D, Eyal E, Edvardson S, Nissenkorn A, Ruzzo EK, Szeinberg A, Maayan C, Mai-Zahav M, Efrati O, et al. TECPR2 mutations cause a new subtype of familial dysautonomia like hereditary sensory autonomic neuropathy with intellectual disability. Eur J Paediatr Neurol. 2016;20(1):69–79.
Article
PubMed
Google Scholar
Yang GL, Fu DL, Lang X, Wang YT, Cheng SR, Fang SL, Luo YZ. Mutations in MC1R gene determine black coat color phenotype in Chinese sheep. Sci World J. 2013;2013:675382.
Google Scholar
Hancock AM, Witonsky DB, Gordon AS, Eshel G, Pritchard JK, Coop G, Di Rienzo A. Adaptations to climate in candidate genes for common metabolic disorders. PLoS Genet. 2008;4(2):e32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee YH, Petkova AP, Konkar AA, Granneman JG. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 2015;29(1):286–99.
Article
CAS
PubMed
Google Scholar
Hao Q, Hansen JB, Petersen RK, Hallenborg P, Jorgensen C, Cinti S, Larsen PJ, Steffensen KR, Wang HB, Collins S, et al. ADD1/SREBP1c activates the PGC1-alpha promoter in brown adipocytes. Bba-Mol Cell Biol L. 2010;1801(4):421–9.
Article
CAS
Google Scholar
Bauters D, Bedossa P, Lijnen HR, Hemmeryckx B. Functional role of ADAMTS5 in adiposity and metabolic health. PLoS One. 2018;13(1):e0190595.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bauters D, Cobbaut M, Geys L, Van Lint J, Hemmeryckx B, Lijnen HR. Loss of ADAMTS5 enhances brown adipose tissue mass and promotes browning of white adipose tissue via CREB signaling. Mol Metab. 2017;6(7):715–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao FP, Wei C, Zhang L, Liu J, Wang G, Zeng T, Du L. A genome scan of recent positive selection signatures in three sheep populations. J Integr Agric. 2016;15(1):162–74.
Article
Google Scholar
Wei CH, Wang HH, Liu G, Wu MM, Cao JXV, Liu Z, Liu RZ, Zhao FP, Zhang L, Lu J, et al. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genomics. 2015;16:194.
Article
PubMed
PubMed Central
Google Scholar
Ling YH, Xiang H, Zhang G, Ding JP, Zhang ZJ, Zhang YH, Han JL, Ma YH, Zhang XR. Identification of complete linkage disequilibrium in the DSG4 gene and its association with wool length and crimp in Chinese indigenous sheep. Genet Mol Res. 2014;13(3):5617–25.
Article
CAS
PubMed
Google Scholar
E GX, Zhao YJ, Ma YH, Cao GL, He JN, Na RS, Zhao ZQ, Jiang CD, Zhang JH, Arlvd S, et al. Desmoglein 4 diversity and correlation analysis with coat color in goat. Genet Mol Res. 2016;15(1):15017814.
Article
CAS
PubMed
Google Scholar
Meyer B, Bazzi H, Zidek V, Musilova A, Kurtz TW, Nurnberg P, Pravenec M, Christiano AM. A spontaneous mutation in the desmoglein 4 gene underlies hypotrichosis in a new lanceolate hair rat model. Differentiation. 2004;72(9–10):541–7.
Article
CAS
PubMed
Google Scholar
Rufaut NW, Pearson AJ, Nixon AJ, Wheeler TT, Wilkins RJ. Identification of differentially expressed genes during a wool follicle growth cycle induced by prolactin. J Investig Dermatol. 1999;113(6):865–72.
Article
CAS
PubMed
Google Scholar
Li Y, Zhou GX, Zhang R, Guo JZ, Li C, Martin G, Chen YL, Wang XL. Comparative proteomic analyses using iTRAQ-labeling provides insights into fiber diversity in sheep and goats. J Proteome. 2018;172:82–8.
Article
CAS
Google Scholar
Kang XL, Liu G, Liu YF, Xu QQ, Zhang M, Fang MY. Transcriptome profile at different physiological stages reveals potential mode for curly fleece in Chinese tan sheep. PLoS One. 2013;8(8):e71763.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang XL, Liu YF, Zhang JB, Xu QQ, Liu CK, Fang MY. Characteristics and expression profile of KRT71 screened by suppression subtractive hybridization cDNA library in curly fleece Chinese tan sheep. DNA Cell Biol. 2017;36(7):552–64.
Article
CAS
PubMed
Google Scholar
Wright D. The genetic architecture of domestication in animals. Bioinform Biol Insights. 2015;9(Suppl 4):11–20.
CAS
PubMed
PubMed Central
Google Scholar
Haase B, Brooks SA, Tozaki T, Burger D, Poncet PA, Rieder S, Hasegawa T, Penedo C, Leeb T. Seven novel KIT mutations in horses with white coat colour phenotypes. Anim Genet. 2009;40(5):623–9.
Article
CAS
PubMed
Google Scholar
Naval-Sanchez M, Nguyen Q, McWilliam S, Porto-Neto LR, Tellam R, Vuocolo T, Reverter A, Perez-Enciso M, Brauning R, Clarke S, et al. Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nat Commun. 2018;9(1):859.
Article
PubMed
PubMed Central
CAS
Google Scholar
Talenti A, Bertolini F, Williams J, Moaeen-ud-Din M, Frattini S, Coizet B, Pagnacco G, Reecy J, Rothschild MF, Crepaldi P, et al. Genomic analysis suggests KITLG is responsible for a Roan pattern in two Pakistani goat breeds. J Hered. 2018;109(3):315–9.
Article
CAS
PubMed
Google Scholar
Li WB, Sartelet A, Tamma N, Coppieters W, Georges M, Charlier C. Reverse genetic screen for loss-of-function mutations uncovers a frameshifting deletion in the melanophilin gene accountable for a distinctive coat color in Belgian blue cattle. Anim Genet. 2016;47(1):110–3.
Article
CAS
PubMed
Google Scholar
Hepp D, Goncalves GL, Moreira GRP, Freitas TRO, Martins CTDC, Weimer TA, Passos DT. Identification of the e allele at the extension locus (MC1R) in Brazilian creole sheep and its role in wool color variation. Genet Mol Res. 2012;11(3):2997–3006.
Article
CAS
PubMed
Google Scholar
Niemi M, Sajantila A, Vilkki J. Temporal variation in coat colour (genotypes) supports major changes in the Nordic cattle population after Iron age. Anim Genet. 2016;47(4):495–8.
Article
CAS
PubMed
Google Scholar
Takeda K, Hozumi H, Ohba K, Yamamoto H, Shibahara S. Regional fluctuation in the functional consequence of LINE-1 insertion in the Mitf gene: the black spotting phenotype arisen from the Mitfmi-bw mouse lacking melanocytes. PLoS One. 2016;11(3):e0150228.
Article
PubMed
PubMed Central
CAS
Google Scholar
Korberg IB, Sundstrom E, Meadows JRS, Pielberg GR, Gustafson U, Hedhammar A, Karlsson EK, Seddon J, Soderberg A, Vila C, et al. A simple repeat polymorphism in the MITF-M promoter is a key regulator of White spotting in dogs. PLoS One. 2014;9(8):e104363.
Article
CAS
Google Scholar
Cohen-Zinder M, Seroussi E, Larkin DM, Loor JJ, Everts-van der Wind A, Lee JH, Drackley JK, Band MR, Hernandez AG, Shani M, et al. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res. 2005;15(7):936–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Mello F, Cobuci JA, Martins MF, Silva MVGB, Neto JB. Association of the polymorphism g.8514C > T in the osteopontin gene (SPP1) with milk yield in the dairy cattle breed Girolando. Anim Genet. 2012;43(5):647–8.
Article
PubMed
CAS
Google Scholar
Gao YH, Jiang JP, Yang SH, Hou YL, Liu GE, Zhang SG, Zhang Q, Sun DX. CNV discovery for milk composition traits in dairy cattle using whole genome resequencing. BMC Genomics. 2017;18:265.
Article
PubMed
PubMed Central
CAS
Google Scholar
Toral PG, Hervas G, Suarez-Vega A, Arranz JJ, Frutos P. Isolation of RNA from milk somatic cells as an alternative to biopsies of mammary tissue for nutrigenomic studies in dairy ewes. J Dairy Sci. 2016;99(10):8461–71.
Article
CAS
PubMed
Google Scholar
Suarez-Vega A, Gutierrez-Gil B, Arranz JJ. Transcriptome expression analysis of candidate milk genes affecting cheese-related traits in 2 sheep breeds. J Dairy Sci. 2016;99(8):6381–90.
Article
CAS
PubMed
Google Scholar
Bionaz M, Loor JJ. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics. 2008;9:366.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee JN, Wang Y, Xu YO, Li YC, Tian F, Jiang MF. Characterisation of gene expression related to milk fat synthesis in the mammary tissue of lactating yaks. J Dairy Res. 2017;84(3):283–8.
Article
CAS
PubMed
Google Scholar
Dyer LM, Kepple JD, Ai LB, Kim WJ, Stanton VL, Reinhard MK, Backman LRF, Streitfeld WS, Babu NR, Treiber N, et al. ATM is required for SOD2 expression and homeostasis within the mammary gland. Breast Cancer Res Tr. 2017;166(3):725–41.
Article
CAS
Google Scholar
Liu JJ, Liang AX, Campanile G, Plastow G, Zhang C, Wang Z, Salzano A, Gasparrini B, Cassandro M, Yang LG. Genome-wide association studies to identify quantitative trait loci affecting milk production traits in water buffalo. J Dairy Sci. 2018;101(1):433–44.
Article
CAS
PubMed
Google Scholar
Boulet AM, Capecchi MR. Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development. 2004;131(2):299–309.
Article
CAS
PubMed
Google Scholar
Raines AM, Magella B, Adam M, Potter SS. Key pathways regulated by HoxA9,10,11/HoxD9,10,11 during limb development. BMC Dev Biol. 2015;15:28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fan B, Onteru SK, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF. Genome-wide association study identifies loci for body composition and structural soundness traits in pigs. PLoS One. 2011;6(2):e14726.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang DJ, Zhou GX, Zhou SW, Zeng J, Wang XL, Jiang Y, Yang YX, Chen YL. Comparative transcriptome analysis reveals potentially novel roles of Homeobox genes in adipose deposition in fat-tailed sheep. Sci Rep-Uk. 2017;7:14491.
Tetens J, Widmann P, Kuhn C, Thaller G. A genome-wide association study indicates LCORL/NCAPG as a candidate locus for withers height in German warmblood horses. Anim Genet. 2013;44(4):467–71.
Article
CAS
PubMed
Google Scholar
Setoguchi K, Watanabe T, Weikard R, Albrecht E, Kuhn C, Kinoshita A, Sugimoto Y, Takasuga A. The SNP c.1326T > G in the non-SMC condensin I complex, subunit G (NCAPG) gene encoding a p.Ile442Met variant is associated with an increase in body frame size at puberty in cattle. Anim Genet. 2011;42(6):650–5.
Article
CAS
PubMed
Google Scholar
Lindholm-Perry AK, Sexten AK, Kuehn LA, Smith TPL, King DA, Shackelford SD, Wheeler TL, Ferrell CL, Jenkins TG, Snelling WM, et al. Association, effects and validation of polymorphisms within the NCAPG-LCORL locus located on BTA6 with feed intake, gain, meat and carcass traits in beef cattle. BMC Genet. 2011;12:103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abo-Ismail MK, Lansink N, Akanno E, Karisa BK, Crowley JJ, Moore SS, Bork E, Stothard P, Basarab JA, Plastow GS. Development and validation of a small SNP panel for feed efficiency in beef cattle. J Anim Sci. 2018;96(2):375–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fossat N, Radziewic T, Jones V, Tourle K, Tam PPL. Conditional restoration and inactivation of Rbm47 reveal its tissue-context requirement for viability and growth. Genesis. 2016;54(3):115–22.
Article
CAS
PubMed
Google Scholar
Roepke TK, King EC, Reyna-Neyra A, Paroder M, Purtell K, Koba W, Fine E, Lerner DJ, Carrasco N, Abbott GW. Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis. Nat Med. 2009;15(10):1186–U1117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kemp JP, Medina-Gomez C, Estrada K, St Pourcain B, Heppe DHM, Warrington NM, Oei L, Ring SM, Kruithof CJ, Timpson NJ, et al. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genet. 2014;10(6):e1004423.
Article
PubMed
PubMed Central
Google Scholar
Sward K, Stenkula KG, Rippe C, Alajbegovic A, Gomez MF, Albinsson S. Emerging roles of the myocardin family of proteins in lipid and glucose metabolism. J Physiol-London. 2016;594(17):4741–52.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bansal SK, Gupta N, Sankhwar SN, Rajender S. Differential genes expression between fertile and infertile spermatozoa revealed by transcriptome analysis. PLoS One. 2015;10(5):e0127007.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Z, Lu JL, Sun XW, Pang QH, Zhao YW. Molecular cloning, mRNA expression, and localization of the G-protein subunit Galphaq in sheep testis and epididymis. Asian Austral J Anim. 2016;29(12):1702–9.
Article
CAS
Google Scholar
Bao JQ, Zhang J, Zheng HL, Xu C, Yan W. UBQLN1 interacts with SPEM1 and participates in spermiogenesis. Mol Cell Endocrinol. 2010;327(1–2):89–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
San Agustin JT, Pazour GJ, Witman GB. Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm. Mol Biol Cell. 2015;26(24):4358–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puri P, Myers K, Kline D, Vijayaraghavan S. Proteomic analysis of bovine sperm YWHA binding partners identify proteins involved in signaling and metabolism. Biol Reprod. 2008;79(6):1183–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Liu K, Zhao ZS, Blair HT, Zhang P, Li DQ, Ma RLZ. Identification of sheep ovary genes potentially associated with off-season reproduction. J Genet Genomics. 2012;39(4):181–90.
Article
PubMed
CAS
Google Scholar
Meng YH, Zhang WL, Zhou JH, Liu MY, Chen JH, Tian S, Zhuo M, Zhang Y, Zhong Y, Du HL, et al. Genome-wide analysis of positively selected genes in seasonal and non-seasonal breeding species. PLoS One. 2015;10(5):e0126736.
Article
PubMed
PubMed Central
CAS
Google Scholar
Drouilhet L, Mansanet C, Sarry J, Tabet K, Bardou P, Woloszyn F, Lluch J, Harichaux G, Viguie C, Monniaux D, et al. The highly prolific phenotype of Lacaune sheep is associated with an ectopic expression of the B4GALNT2 gene within the ovary. PLoS Genet. 2013;9(9):e1003809.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yurchenko A, Daetwyler HD, Yudin N, Schnabel RD, Vander Jagt CJ, Soloshenko V, Lhasaranov B, Popov R, Taylor JF, Larkin DM. Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental acclimation and adaptation. Sci Rep-Uk. 2018;8(1):12984.
Zhao FP, McParland S, Kearney F, Du LX, Berry DP. Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genet Sel Evol. 2015;47:49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soini K, Ovaska U, Kantanen J. Spaces of conservation of local breeds: the case of Yakutian cattle. Sociol Ruralis. 2012;52(2):170–91.
Article
Google Scholar
Sambrook J, Russell DW, Sambrook J. The condensed protocols from molecular cloning : a laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2006.
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28(24):3326–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Behr AA, Liu KZ, Liu-Fang G, Nakka P, Ramachandran S. Pong: fast analysis and visualization of latent clusters in population genetic data. Bioinformatics. 2016;32(18):2817–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fariello MI, Boitard S, Naya H, SanCristobal M, Servin B. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics. 2013;193(3):929–41.
Article
PubMed
PubMed Central
Google Scholar
Scheet P, Stephens M. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet. 2006;78(4):629–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boitard S, Boussaha M, Capitan A, Rocha D, Servin B. Uncovering adaptation from sequence data: lessons from genome resequencing of four cattle breeds. Genetics. 2016;203(1):433–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100(16):9440–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma Y, Ding X, Qanbari S, Weigend S, Zhang Q, Simianer H. Properties of different selection signature statistics and a new strategy for combining them. Heredity (Edinb). 2015;115(5):426–36.
Article
CAS
Google Scholar
Lotterhos KE, Card DC, Schaal SM, Wang LY, Collins C, Verity B. Composite measures of selection can improve the signal-to-noise ratio in genome scans. Methods Ecol Evol. 2017;8(6):717–27.
Article
Google Scholar
Garud NR, Messer PW, Buzbas EO, Petrov DA. Recent selective sweeps in north American Drosophila melanogaster show signatures of soft sweeps. PLoS Genet. 2015;11(2):e1005004.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population-structure. Evolution. 1984;38(6):1358–70.
CAS
PubMed
Google Scholar
Tajima F. Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123(3):585–95.
CAS
PubMed
PubMed Central
Google Scholar
Nei M, Li WH. Mathematical-model for studying genetic-variation in terms of restriction endonucleases. Proc Natl Acad Sci USA. 1979;76(10):5269–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods. 2013;10(1):5–6.
Article
CAS
PubMed
Google Scholar
Petit M, Astruc JM, Sarry J, Drouilhet L, Fabre S, Moreno CR, Servin B. Variation in recombination rate and its genetic determinism in sheep populations. Genetics. 2017;207(2):767–84.
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Proc GPD. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tange O. Gnu parallel-the command-line power tool. USENIX Mag. 2011;36(1):42–7.
Google Scholar
Verity R, Collins C, Card DC, Schaal SM, Wang L, Lotterhos KE. Minotaur: a platform for the analysis and visualization of multivariate results from genome scans with R shiny. Mol Ecol Resour. 2017;17(1):33–43.
Article
CAS
PubMed
Google Scholar
Kasprzyk A. BioMart: driving a paradigm change in biological data management. Database-Oxford. 2011;2011:bar049.
PubMed
PubMed Central
Google Scholar
Jiang Y, Xie M, Chen W, Talbot R, Maddox JF, Faraut T, Wu C, Muzny DM, Li Y, Zhang W, et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science. 2014;344(6188):1168–73.
Article
CAS
PubMed
PubMed Central
Google Scholar