Wang H, Yu L, Lai F, Liu L, Wang J. Molecular evidence for asymmetric evolution of sister duplicated blocks after cereal polyploidy. Plant Mol Biol. 2005;59(1):63-74.
Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D'Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, et al. Analysis of the breadwheat genome using whole-genome shotgun sequencing. Nature. 2012;491(7426):705–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science (New York, NY). 2017;357(6346):93–6.
Article
CAS
Google Scholar
Lev-Yadun S, Gopher A, Abbo S. Archaeology. The cradle of agriculture. Science (New York, NY). 2000;288(5471):1602–3.
Article
CAS
Google Scholar
Chalupska D, Lee HY, Faris JD, Evrard A, Chalhoub B, Haselkorn R, Gornicki P. Acc homoeoloci and the evolution of wheat genomes. Proc Natl Acad Sci U S A. 2008;105(28):9691–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science (New York, NY). 2007;316(5833):1862–6.
Article
CAS
Google Scholar
Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y, et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature. 2017;551(7681):498–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Martin W. Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet. 2002;3(6):429–41.
Article
CAS
PubMed
Google Scholar
Akpinar BA, Biyiklioglu S, Alptekin B, Havrankova M, Vrana J, Dolezel J, Distelfeld A, Hernandez P, IWGSC, Budak H. Chromosome-based survey sequencing reveals the genome organization of wild wheat progenitor Triticum dicoccoides. Plant Biotechnol J. 2018;16(12):2077–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013;496(7443):87–90.
Article
CAS
PubMed
Google Scholar
Faricelli ME, Valarik M, Dubcovsky J. Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice, and Brachypodium. Funct Integr Genomics. 2010;10(2):293–306.
Article
CAS
PubMed
Google Scholar
Ling HQ, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, et al. Genome sequence of the progenitor of wheat a subgenome Triticum urartu. Nature. 2018;557(7705):424–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia JZ, Zhao SC, Kong XY, Li YR, Zhao GY, He WM, Appels R, Pfeifer M, Tao Y, Zhang XY, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013;496(7443):91–5.
Article
CAS
PubMed
Google Scholar
Zhao G, Zou C, Li K, Wang K, Li T, Gao L, Zhang X, Wang H, Yang Z, Liu X. The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants. 2017;3(12):946–55.
Article
CAS
PubMed
Google Scholar
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544(7651):427–33.
Article
CAS
PubMed
Google Scholar
Wicker T, Schulman AH, Tanskanen J, Spannagl M, Twardziok S, Mascher M, Springer NM, Li Q, Waugh R, Li C. The repetitive landscape of the 5100 Mbp barley genome. Mob DNA. 2017;8(1):22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491(7426):711–6.
Article
CAS
PubMed
Google Scholar
Wang X, Wang J, Jin D, Guo H, Lee TH, Liu T, Paterson AH. Genome alignment spanning major Poaceae lineages reveals heterogeneous evolutionary rates and alters inferred dates for key evolutionary events. Mol Plant. 2015;8(6):885–98.
Article
CAS
PubMed
Google Scholar
Wang X, Jin D, Wang Z, Guo H, Zhang L, Wang L, Li J, Paterson AH. Telomere-centric genome repatterning determines recurring chromosome number reductions during the evolution of eukaryotes. New Phytol. 2015;205(1):378–89.
Article
CAS
PubMed
Google Scholar
Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge AP. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 2001;127(4):1539–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foote TN, Griffiths S, Allouis S, Moore G. Construction and analysis of a BAC library in the grass Brachypodium sylvaticum: its use as a tool to bridge the gap between rice and wheat in elucidating gene content. Funct Integr Genomics. 2004;4(1):26–33.
Article
CAS
PubMed
Google Scholar
Huo NX, Vogel JP, Lazo GR, You FM, Ma YQ, McMahon S, Dvorak J, Anderson OD, Luo MC, Gu YQ. Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat. Plant Mol Biol. 2009;70(1–2):47–61.
Article
CAS
PubMed
Google Scholar
Higgins JA, Bailey PC, Laurie DA. Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. Plos One 2010;5(4):e10065.
Kumar S, Mohan A, Balyan HS, Gupta PK. Orthology between genomes of Brachypodium, wheat and rice. BMC Res Notes. 2009;2(1):93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ozdemir BS, Hernandez P, Filiz E, Budak H. Brachypodium genomics. Intern J Plant Genomics. 2008;2008:536104.
Article
CAS
Google Scholar
Huo NX, Lazo GR, Vogel JP, You FM, Ma YQ, Hayde DM, Coleman-Derr D, Hill TA, Dvorak J, Anderson OD, et al. The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Funct Integr Genomic. 2008;8(2):135–47.
Article
CAS
Google Scholar
International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463(7282):763–8.
Article
CAS
Google Scholar
Budak H, Hernandez P, Schulman AH: Analysis and Exploitation of Cereal Genomes with the Aid of Brachypodium. In: Tuberosa R, Graner A, Frison E, editors. Genomics of Plant Genetic Resources. Springer, Dordrecht; 2014. p. 585–613.
Kerrie F, Donnison IS. Construction and screening of BAC libraries made from Brachypodium genomic DNA. Nat Protoc. 2007;2(7):1661–74.
Article
CAS
Google Scholar
Idziakhelmcke D, Betekhtin A. Methods for cytogenetic chromosome barcoding and chromosome painting in Brachypodium distachyon and its relative species. Methods Mol Biol. 2018;1667:1–19.
Article
CAS
Google Scholar
Kellogg EA. Brachypodium distachyon as a genetic model system. Annu Rev Genet. 2015;49:1–20.
Article
CAS
PubMed
Google Scholar
Gordon SP, Contreras-Moreira B, Woods DP, Des Marais DL, Burgess D, Shu S, Stritt C, Roulin AC, Schackwitz W, Tyler L, et al. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat Commun. 2017;8(1):2184.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A. 2006;103(13):5224–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schubert I, Lysak MA. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet. 2011;27(6):207–16.
Article
CAS
PubMed
Google Scholar
Schubert I, Vu GTH. Genome stability and evolution: attempting a holistic view. Trends Plant Sci. 2016;21(9):749–57.
Article
CAS
PubMed
Google Scholar
Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C. Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci U S A. 2009;106(35):14908–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murat F, Zhang R, Guizard S, Flores R, Armero A, Pont C, Steinbach D, Quesneville H, Cooke R, Salse J. Shared subgenome dominance following polyploidization explains grass genome evolutionary plasticity from a seven protochromosome ancestor with 16K protogenes. Genome Biol Evol. 2014;6(1):12–33.
Article
PubMed
Google Scholar
Murat F, Armero A, Pont C, Klopp C, Salse J. Reconstructing the genome of the most recent common ancestor of flowering plants. Nat Genet. 2017;49(4):490–6.
Article
CAS
PubMed
Google Scholar
Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 2008;18(12):1944–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Shi X, Li Z, Zhu Q, Kong L, Tang W, Ge S, Luo J. Statistical inference of chromosomal homology based on gene colinearity and applications to Arabidopsis and rice. BMC Bioinformatics. 2006;7(1):1–13.
Article
CAS
Google Scholar
Michelmore RW, Meyers BC. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 1998;8(11):1113.
Article
CAS
PubMed
Google Scholar
Paterson AH, Bowers JE, Chapman BA. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A. 2004;101(26):9903–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Shi X, Hao B, Ge S, Luo J. Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol. 2005;165(3):937–46.
Article
CAS
PubMed
Google Scholar
Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang ML, Chen J, Biggers E, et al. The pineapple genome and the evolution of CAM photosynthesis. Nat Genet. 2015;47(12):1435–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. Synteny and collinearity in plant genomes. Science (New York, NY). 2008;320(5875):486–8.
Article
CAS
Google Scholar
Bowers JE, Chapman BA, Rong JK, Paterson AH. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature. 2003;422(6930):433–8.
Article
CAS
PubMed
Google Scholar
Sankoff D, Zheng C, Zhu Q. The collapse of gene complement following whole genome duplication. BMC Genomics. 2010;11:313.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thomas BC, Pedersen B, Freeling M. Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res. 2006;16(7):934–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowers JE, Arias MA, Asher R, Avise JA, Ball RT, Brewer GA, Buss RW, Chen AH, Edwards TM, Estill JC, et al. Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. P Natl Acad Sci USA. 2005;102(37):13206–11.
Article
CAS
Google Scholar
Gordon JL, Byrne KP, Wolfe KH. Mechanisms of chromosome number evolution in yeast. PLoS Genet. 2011;7(7):e1002190.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gordon JL, Byrne KP, Wolfe KH. Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome. PLoS Genet. 2009;5(5):e1000485.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guerra CE, Kaback DB. The role of centromere alignment in meiosis I segregation of homologous chromosomes in Saccharomyces cerevisiae. Genetics. 1999;153(4):1547–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hillier LW, Graves TA, Fulton RS, Fulton LA, Pepin KH, Minx P, Wagner-McPherson C, Layman D, Wylie K, Sekhon M, et al. Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Nature. 2005;434(7034):724–31.
Article
CAS
PubMed
Google Scholar
Ijdo JW, Baldini A, Ward DC, Reeders ST, Wells RA. Origin of human Chromosome-2 - an ancestral telomere telomere fusion. P Natl Acad Sci USA. 1991;88(20):9051–5.
Article
CAS
Google Scholar
Malik HS, Henikoff S. Major evolutionary transitions in centromere complexity. Cell. 2009;138(6):1067–82.
Article
CAS
PubMed
Google Scholar
Murat F, Xu JH, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J. Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res. 2010;20(11):1545–57.
Article
CAS
PubMed
PubMed Central
Google Scholar