Kirschner DE, Freter R. Mathematical models of colonization and persistence in bacterial infections. In: Nataro JP, Blaser MJ, Cunningham-Rundles S, editors. Persistant bacterial infections. Washington D. C: ASM Press; 2000.
Google Scholar
Dominguez-Hüttinger E, Boon NJ, Clarke TB, Tanaka RJ. Mathematical modeling of Streptococcus pneumoniae colonization, invasive infection and treatment. Front Physiol. 2017;8:115.
Article
PubMed
PubMed Central
Google Scholar
Smith H. What happens to bacterial pathogens in vivo? Trends Microbiol. 1998;6:239–43.
Article
CAS
PubMed
Google Scholar
van Opijnen T, Camilli A. A fine scale phenotype-genotype virulence map of a bacterial pathogen. Genome Res. 2012;22:2541–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Myhrvold C, Kotula JW, Hicks WM, Conway NJ, Silver PA. A distributed cell division counter reveals growth dynamics in the gut microbiota. Nat Commun. 2015;6:10039.
Article
CAS
PubMed
Google Scholar
Grant AJ, Restif O, McKinley TJ, Sheppard M, Maskell DJ, et al. Modelling within-host spatiotemporal dynamics of invasive bacterial disease. PLoS Biol. 2008;6:e74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abel S, Abel zur Wiesch P, Chang HH, Davis BM, Lipsitch M, et al. Sequence tag-based analysis of microbial population dynamics. Nat Methods. 2015;12:223–6 223 p following 226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korem T, Zeevi D, Suez J, Weinberger A, Avnit-Sagi T, et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science. 2015;349:1101–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown CT, Olm MR, Thomas BC, Banfield JF. Measurement of bacterial replication rates in microbial communities. Nat Biotechnol. 2016;34:1256–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olm MR, Brown CT, Brooks B, Firek B, Baker R, et al. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates. Genome Res. 2017;27:601–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010;23:616–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5:751–62.
Article
PubMed
Google Scholar
van Belkum A, Verkaik NJ, de Vogel CP, Boelens HA, Verveer J, et al. Reclassification of Staphylococcus aureus nasal carriage types. J Infect Dis. 2009;199:1820–6.
Article
PubMed
Google Scholar
Mulcahy ME, McLoughlin RM. Host-bacterial crosstalk determines Staphylococcus aureus nasal colonization. Trends Microbiol. 2016;24:872–86.
Article
CAS
PubMed
Google Scholar
Mulcahy ME, Geoghegan JA, Monk IR, O'Keeffe KM, Walsh EJ, et al. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog. 2012;8:e1003092.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med. 2004;10:243–5.
Article
CAS
PubMed
Google Scholar
Gizurarson S. The effect of cilia and the mucociliary clearance on successful drug delivery. Biol Pharm Bull. 2015;38:497–506.
Article
CAS
PubMed
Google Scholar
Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;15:259–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cole AM, Tahk S, Oren A, Yoshioka D, Kim YH, et al. Determinants of Staphylococcus aureus nasal carriage. Clin Diagn Lab Immunol. 2001;8:1064–9.
CAS
PubMed
PubMed Central
Google Scholar
Krismer B, Liebeke M, Janek D, Nega M, Rautenberg M, et al. Nutrient limitation governs Staphylococcus aureus metabolism and niche adaptation in the human nose. PLoS Pathog. 2014;10:e1003862.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pezzulo AA, Gutierrez J, Duschner KS, McConnell KS, Taft PJ, et al. Glucose depletion in the airway surface liquid is essential for sterility of the airways. PLoS One. 2011;6:e16166.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olson ME, King JM, Yahr TL, Horswill AR. Sialic acid catabolism in Staphylococcus aureus. J Bacteriol. 2013;195:1779–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradshaw DJ, Homer KA, Marsh PD, Beighton D. Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology. 1994;140 ( Pt 12:3407–12.
Article
CAS
PubMed
Google Scholar
Krismer B, Weidenmaier C, Zipperer A, Peschel A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat Rev Microbiol. 2017;15:675–87.
Article
CAS
PubMed
Google Scholar
Roetzer A, Diel R, Kohl TA, Ruckert C, Nübel U, et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med. 2013;10:e1001387.
Article
PubMed
PubMed Central
Google Scholar
Steglich M, Nitsche A, von Müller L, Herrmann M, Kohl TA, et al. Tracing the spread of Clostridium difficile ribotype 027 in Germany based on bacterial genome sequences. PLoS One. 2015;10:e0139811.
Article
PubMed
PubMed Central
CAS
Google Scholar
Haller S, Eller C, Hermes J, Kaase M, Steglich M, et al. What caused the outbreak of ESBL producing Klebsiella pneumoniae in a neonatal intensive care unit, Germany 2009 to 2012? Reconstructing transmission with epidemiological analysis and whole-genome sequencing. BMJ Open. 2015;5:e007397.
Article
PubMed
PubMed Central
Google Scholar
Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE, et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. MBio. 2016;7:e02162.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohne DE, Chiscon JA, Hoyer BH. Evolution of primate DNA sequences. J Human Evolution. 1972;1:627–44.
Article
Google Scholar
Yue JX, Li J, Wang D, Araki H, Tian D, et al. Genome-wide investigation reveals high evolutionary rates in annual model plants. BMC Plant Biol. 2010;10:242.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weller C, Wu M. A generation-time effect on the rate of molecular evolution in bacteria. Evolution. 2015;69:643–52.
Article
CAS
PubMed
Google Scholar
Gibson B, Wilson DJ, Feil E, Eyre-Walker A. The distribution of bacterial doubling times in the wild. Proc Biol Sci. 2018;285:20180789.
Article
PubMed
PubMed Central
CAS
Google Scholar
Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK, et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science. 2010;327:469–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nübel U, Dordel J, Kurt K, Strommenger B, Westh H, et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010;6:e1000855.
Article
PubMed
PubMed Central
CAS
Google Scholar
Holden MT, Hsu LY, Kurt K, Weinert LA, Mather AE, et al. A genomic portrait of the emergence, evolution and global spread of a methicillin resistant Staphylococcus aureus pandemic. Genome Res. 2013;23:653–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rocha EP, Smith JM, Hurst LD, Holden MT, Cooper JE, et al. Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol. 2006;239:226–35.
Article
CAS
PubMed
Google Scholar
Duchêne S, Holt KE, Weill FX, Le Hello S, Hawkey J, et al. Genome-scale rates of evolutionary change in bacteria. Microb Genom. 2016;2:e000094.
PubMed
PubMed Central
Google Scholar
Ward MJ, Gibbons CL, McAdam PR, van Bunnik BA, Girvan EK, et al. Time-scaled evolutionary analysis of the transmission and antibiotic resistance dynamics of Staphylococcus aureus clonal complex 398. Appl Environ Microbiol. 2014;80:7275–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmitz FJ, Fluit AC, Hafner D, Beeck A, Perdikouli M, et al. Development of resistance to ciprofloxacin, rifampin, and mupirocin in methicillin-susceptible and -resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother. 2000;44:3229–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aubry-Damon H, Soussy CJ, Courvalin P. Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1998;42:2590–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee H, Popodi E, Tang H, Foster PL. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci U S A. 2012;109:E2774–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strauss C, Long H, Patterson CE, Te R, Lynch M. Genome-wide mutation rate response to pH change in the coral reef pathogen Vibrio shilonii AK1. MBio. 2017;8:e01021–17.
Article
PubMed
PubMed Central
Google Scholar
Long H, Sung W, Kucukyildirim S, Williams E, Miller SF, et al. Evolutionary determinants of genome-wide nucleotide composition. Nat Ecol Evol. 2018;2:237–40.
Article
PubMed
PubMed Central
Google Scholar
Foster PL, Lee H, Popodi E, Townes JP, Tang H. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proc Natl Acad Sci U S A. 2015;112:E5990–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch M, Ackerman MS, Gout JF, Long H, Sung W, et al. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet. 2016;17:704–14.
Article
CAS
PubMed
Google Scholar
Sung W, Ackerman MS, Gout JF, Miller SF, Williams E, et al. Asymmetric context-dependent mutation patterns revealed through mutation-accumulation experiments. Mol Biol Evol. 2015;32:1672–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun L, Alexander HK, Bogos B, Kiviet DJ, Ackermann M, et al. Effective polyploidy causes phenotypic delay and influences bacterial evolvability. PLoS Biol. 2018;16:e2004644.
Article
PubMed
PubMed Central
CAS
Google Scholar
Horst J-P, Wu T, Marinus MG. Escherichia coli mutator genes. Trends Microbiol. 1999;7:29–36.
Article
CAS
PubMed
Google Scholar
Golubchik T, Batty EM, Miller RR, Farr H, Young BC, et al. Within-host evolution of Staphylococcus aureus during asymptomatic carriage. PLoS One. 2013;8:e61319.
Article
CAS
PubMed
PubMed Central
Google Scholar
Proctor DM, Relman DA. The landscape ecology and microbiota of the human nose, mouth, and throat. Cell Host Microbe. 2017;21:421–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopf SH, Sessions AL, Cowley ES, Reyes C, Van Sambeek L, et al. Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum. Proc Natl Acad Sci U S A. 2016;113:E110–6.
Article
CAS
PubMed
Google Scholar
Helaine S, Thompson JA, Watson KG, Liu M, Boyle C, et al. Dynamics of intracellular bacterial replication at the single cell level. Proc Natl Acad Sci U S A. 2010;107:3746–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drake JW. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. 1991;88:7160–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell. 2010;37:311–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutierrez A, Laureti L, Crussard S, Abida H, Rodriguez-Rojas A, et al. Beta-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun. 2013;4:1610.
Article
CAS
PubMed
Google Scholar
Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 2014;12:465–78.
Article
CAS
PubMed
Google Scholar
Bjedov I, Tenaillon O, Gerard B, Souza V, Denamur E, et al. Stress-induced mutagenesis in bacteria. Science. 2003;300:1404–9.
Article
CAS
PubMed
Google Scholar
Katz S, Hershberg R. Elevated mutagenesis does not explain the increased frequency of antibiotic resistant mutants in starved aging colonies. PLoS Genet. 2013;9:e1003968.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wrande M, Roth JR, Hughes D. Accumulation of mutants in “aging” bacterial colonies is due to growth under selection, not stress-induced mutagenesis. Proc Natl Acad Sci U S A. 2008;105:11863–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frenoy A, Bonhoeffer S. Death and population dynamics affect mutation rate estimates and evolvability under stress in bacteria. PLoS Biol. 2018;16:e2005056.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shewaramani S, Finn TJ, Leahy SC, Kassen R, Rainey PB, et al. Anaerobically grown Escherichia coli has an enhanced mutation rate and distinct mutational spectra. PLoS Genet. 2017;13:e1006570.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cole AM, Dewan P, Ganz T. Innate antimicrobial activity of nasal secretions. Infect Immun. 1999;67:3267–75.
CAS
PubMed
PubMed Central
Google Scholar
Siegel SJ, Weiser JN. Mechanisms of bacterial colonization of the respiratory tract. Annu Rev Microbiol. 2015;69:425–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
White A. Quantitative studies of nasal carriers of staphylococci among hospitalized patients. J Clin Invest. 1961;40:23–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nouwen JL, Ott A, Kluytmans-Vandenbergh MF, Boelens HA, Hofman A, et al. Predicting the Staphylococcus aureus nasal carrier state: derivation and validation of a “culture rule”. Clin Infect Dis. 2004;39:806–11.
Article
PubMed
Google Scholar
Liu CM, Price LB, Hungate BA, Abraham AG, Larsen LA, et al. Staphylococcus aureus and the ecology of the nasal microbiome. Sci Adv. 2015;1:e1400216.
Article
PubMed
PubMed Central
Google Scholar
Yan M, Pamp SJ, Fukuyama J, Hwang PH, Cho DY, et al. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage. Cell Host Microbe. 2013;14:631–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008;1:183–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535:511–6.
Article
CAS
PubMed
Google Scholar
Shuter J, Hatcher VB, Lowy FD. Staphylococcus aureus binding to human nasal mucin. Infect Immun. 1996;64:310–8.
CAS
PubMed
PubMed Central
Google Scholar
Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol. 2006;4:295–305.
Article
CAS
PubMed
Google Scholar
Pollitt EJG, Szkuta PT, Burns N, Foster SJ. Staphylococcus aureus infection dynamics. PLoS Pathog. 2018;14:e1007112.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zheng Q. rSalvador: an R package for the fluctuation experiment. G3 (Bethesda). 2017;7:3849–56.
Article
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B. 1995;57:289–300.
Google Scholar
Szafrańska AK, Oxley AP, Chaves-Moreno D, Horst SA, Rosslenbroich S, et al. High-resolution transcriptomic analysis of the adaptive response of Staphylococcus aureus during acute and chronic phases of osteomyelitis. MBio. 2014;5:e01775–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Steglich M, Hoffmann JD, Helmecke J, Sikorski J, Spröer C, et al. Convergent loss of ABC transporter genes from Clostridioides difficile genomes is associated with impaired tyrosine uptake and p-cresol production. Front Microbiol. 2018;9:901.
Article
PubMed
PubMed Central
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv. 2013;1303:3997.
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer; 2002. p. 488.
Google Scholar
McAdam PR, Templeton KE, Edwards GF, Holden MT, Feil EJ, et al. Molecular tracing of the emergence, adaptation, and transmission of hospital-associated methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A. 2012;109:9107–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uhlemann AC, Dordel J, Knox JR, Raven KE, Parkhill J, et al. Molecular tracing of the emergence, diversification, and transmission of S. aureus sequence type 8 in a New York community. Proc Natl Acad Sci U S A. 2014;111:6738–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baines SL, Holt KE, Schultz MB, Seemann T, Howden BO, et al. Convergent adaptation in the dominant global hospital clone ST239 of methicillin-resistant Staphylococcus aureus. MBio. 2015;6:e00080.
Article
PubMed
PubMed Central
CAS
Google Scholar