D’Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488:213–7.
Article
Google Scholar
Garsmeur O, Schnable JC, Almeida A, Jourda C, D’Hont A, Freeling M. Two evolutionarily distinct classes of Paleopolyploidy. Mol Biol Evol. 2014;31:448–54.
Article
CAS
Google Scholar
Cenci A, Guignon V, Roux N, Rouard M. Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. Plant Mol Biol. 2014;85(1-2):63–80.
Article
CAS
Google Scholar
Wendel JF. The wondrous cycles of polyploidy in plants. Am J Bot. 2015;102:1753–6.
Article
CAS
Google Scholar
Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J. A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genomics. 2013;14:683.
Article
CAS
Google Scholar
Kundapura Venkataramana R, Hastantram Sampangi-Ramaiah M, Ajitha R, Khadke GN, Chellam V. Insights into Musa balbisiana and Musa acuminata species divergence and development of genic microsatellites by transcriptomics approach. Plant Gene. 2015;4:78–82.
Article
CAS
Google Scholar
Ilut DC, Coate JE, Luciano AK, Owens TG, May GD, Farmer A, et al. A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNA-seq in plant species. Am J Bot. 2012;99:383–96.
Article
CAS
Google Scholar
Combes M-C, Dereeper A, Severac D, Bertrand B, Lashermes P. Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures. New Phytol. 2013;200:251–60.
Article
CAS
Google Scholar
Adams KL, Cronn R, Percifield R, Wendel JF. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci. 2003;100:4649–54.
Article
CAS
Google Scholar
Powell JJ, Fitzgerald TL, Stiller J, Berkman PJ, Gardiner DM, Manners JM, et al. The defence-associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias. Plant Biotechnol J. 2017;15:533–43.
Article
CAS
Google Scholar
Braynen J, Yang Y, Wei F, Cao G, Shi G, Tian B, et al. Transcriptome analysis of floral buds deciphered an irregular course of meiosis in Polyploid Brassica rapa. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.00768.
Lloyd A, Blary A, Charif D, Charpentier C, Tran J, Balzergue S, et al. Homoeologous exchanges cause extensive dosage-dependent gene expression changes in an allopolyploid crop. New Phytol. 2017. https://doi.org/10.1111/nph.14836.
De Langhe E, Hřibová E, Carpentier S, Doležel J, Swennen R. Did backcrossing contribute to the origin of hybrid edible bananas? Ann Bot. 2010;106:849–57.
Article
Google Scholar
Carpentier SC, Panis B, Renaut J, Samyn B, Vertommen A, Vanhove A-C, et al. The use of 2D-electrophoresis and de novo sequencing to characterize inter- and intra-cultivar protein polymorphisms in an allopolyploid crop. Phytochemistry. 2011;72:1243–50.
Article
CAS
Google Scholar
Noumbissié GB, Chabannes M, Bakry F, Ricci S, Cardi C, Njembele J-C, et al. Chromosome segregation in an allotetraploid banana hybrid (AAAB) suggests a translocation between the a and B genomes and results in eBSV-free offsprings. Mol Breed. 2016;36:38.
Article
Google Scholar
Zorrilla-Fontanesi Y, Rouard M, Cenci A, Kissel E, Do H, Dubois E, et al. Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress. Sci Rep. 2016;6:22583.
Article
CAS
Google Scholar
Martin G, Baurens F-C, Droc G, Rouard M, Cenci A, Kilian A, et al. Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics. 2016;17:243.
Article
Google Scholar
van Wesemael J, Hueber Y, Kissel E, Campos N, Swennen R, Carpentier S. Homeolog expression analysis in an allotriploid non-model crop via integration of transcriptomics and proteomics. Sci Rep. 2018;8:1353.
Article
Google Scholar
Baurens F-C, Martin G, Hervouet C, Salmon F, Yohomé D, Ricci S, et al. Recombination and large structural variations shape interspecific edible bananas genomes. Mol Biol Evol. 2019;36:97–111.
Article
Google Scholar
Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol. 2002;5:218–23.
Article
CAS
Google Scholar
Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K. The flowering world: a tale of duplications. Trends Plant Sci. 2009;14:680–8.
Article
Google Scholar
Van de Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat Rev Genet. 2017;18:411–24.
Article
Google Scholar
Flagel LE, Wendel JF. Gene duplication and evolutionary novelty in plants. New Phytol. 2009;183:557–64.
Article
Google Scholar
Murat F, Armero A, Pont C, Klopp C, Salse J. Reconstructing the genome of the most recent common ancestor of flowering plants. Nat Genet. 2017;49:490–6.
Article
CAS
Google Scholar
Cenci A, Rouard M. Evolutionary analyses of GRAS transcription factors in angiosperms. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.00273.
Li Z, Defoort J, Tasdighian S, Maere S, de PYV, Smet RD. Gene duplicability of Core genes is highly consistent across all angiosperms. Plant Cell. 2016;28:326–44.
Article
CAS
Google Scholar
Podevin N, Krauss A, Henry I, Swennen R, Remy S. Selection and validation of reference genes for quantitative RT-PCR expression studies of the non-model crop Musa. Mol Breed:1–16.
Andrews S. Babraham Bioinformatics—FastQC a quality control tool for high throughput sequence data; 2015.
Google Scholar
Droc G, Lariviere D, Guignon V, Yahiaoui N, This D, Garsmeur O, et al. The Banana genome hub. Database. 2013;2013:bat035–bat035.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
CAS
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w 1118 ; iso-2; iso-3. Fly (Austin). 2012;6:80–92.
Article
CAS
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.
Article
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
Article
CAS
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.
Article
CAS
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
Article
CAS
Google Scholar
Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 2012;40:D130–5.
Article
CAS
Google Scholar
De Smet R, Adams KL, Vandepoele K, Van Montagu MCE, Maere S, Van de Peer Y. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc Natl Acad Sci. 2013;110:2898–903.
Article
Google Scholar