Skvortsov AK. Willows of Russia and adjacent countries. Taxonomical and geographical revision. 1999.
Argus G. Salix. In: Flora of North America North of Mexico. 2010. doi:citeulike-article-id:13509198.
Fang Z, Zhao S, Skvortsov AK. Salicaceae. In: Wu ZY, raven PH, Hong DY, editors. Flora of China. Beijing & St. Louis: Science Press & Missouri Botanical Garden Press; 1999.
Google Scholar
Ding T. Origin, divergence and geographical distribution of Salicaceae. [Chinese]. Acta Bot Yunnanica. 1995;17:277–90.
Google Scholar
Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 2014;42.
Dai X, Hu Q, Cai Q, Feng K, Ye N, Tuskan GA, et al. The willow genome and divergent evolution from poplar after the common genome duplication. Cell Res. 2014;24:1274–7.
Article
CAS
Google Scholar
Abdollahzadeh A, Osaloo SK, Maassoumi A. Molecular phylogeny of the genus Salix (Salicaceae) with an emphasize to its species in Iran. Iran J bot. 2011;17:245–53.
Google Scholar
Azuma T, Kajita T, Yokoyama J, Ohashi H. Phylogenetic relationships of Salix (Salicaceae) based on rbcL sequence data. Am J Bot. 2000;87:67–75.
Article
CAS
Google Scholar
Hardig TM, Anttila CK, Brunsfeld SJ. A phylogenetic analysis of Salix (Salicaceae) based on matK and ribosomal DNA sequence data. J Bot. 2010;2010:1–12. https://doi.org/10.1155/2010/197696.
Article
CAS
Google Scholar
Chen JH, Sun H, Wen J, Yang YP. Molecular phylogeny of Salix L. (Salicaceae) inferred from three chloroplast datasets and its systematic implications. Taxon. 2010;59:29–37.
Article
Google Scholar
Lauron-Moreau A, Pitre FE, Argus GW, Labrecque M, Brouillet L. Phylogenetic relationships of American willows (Salix L., Salicaceae). PLoS One. 2015;10(4):e0121965.
Article
Google Scholar
Du SH, Wang ZS, Li YX, Wang DS, Zhang JG. Consistency between molecular phylogeny and morphological classification of the Salix matsudana koidz. Complex (Salicaceae). Genet Mol Res. 2015;14:8663–71.
Article
CAS
Google Scholar
Wu J, Nyman T, Wang DC, Argus GW, Yang YP, Chen JH. Phylogeny of Salix subgenus Salix s.L. (Salicaceae): delimitation, biogeography, and reticulate evolution neuromuscular disorders and peripheral neurology. BMC Evol Biol. 2015;15(1):31.
Article
Google Scholar
Huang Y, Wang J, Yang Y, Fan C, Chen J. Phylogenomic analysis and dynamic evolution of chloroplast genomes in salicaceae. Front Plant Sci. 2017;8:1050.
Article
Google Scholar
Zhang L, Xi Z, Wang M, Guo X, Ma T. Plastome phylogeny and lineage diversification of Salicaceae with focus on poplars and willows. Ecol Evol. 2018; 8(16): 7817–7823.
Boucher LD, Manchester SR, Judd WS. An extinct genus of Salicaceae based on twigs with attached flowers, fruits, and foliage from the Eocene Green River formation of Utah and Colorado. USA Am J Bot. 2003;90:1389–99.
Article
Google Scholar
Manchester SR, Judd WS, Handley B. Foliage and fruits of early poplars (Salicaceae: Populus ) from the Eocene of Utah, Colorado, and Wyoming. Int J Plant Sci. 2006;167:897–908. https://doi.org/10.1086/503918.
Article
Google Scholar
Berlin S, Lagercrantz U, von Arnold S, Öst T, Rönnberg-Wästljung AC. High-density linkage mapping and evolution of paralogs and orthologs in Salix and Populus. BMC Genomics. 2010;11:129.
Article
Google Scholar
Brereton NJB, Gonzalez E, Marleau J, Nissim WG, Labrecque M, Joly S, et al. Comparative transcriptomic approaches exploring contamination stress tolerance in Salix sp. reveal the importance for a Metaorganismal de novo assembly approach for nonmodel plants. Plant Physiol. 2016;171:3–24. https://doi.org/10.1104/pp.16.00090.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao G, Sui J, Zeng Y, He C, Duan A, Zhang J. De novo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix Matsudana. PLoS One. 2014;9:e109122.
Article
Google Scholar
Song X, Fang J, Han X, He X, Liu M, Hu J, et al. Overexpression of quinone reductase from Salix matsudana Koidz enhances salt tolerance in transgenic Arabidopsis thaliana. Gene. 2016;576:520–7.
Article
CAS
Google Scholar
Yanitch A, Brereton NJB, Gonzalez E, Labrecque M, Joly S, Pitre FE. Transcriptomic response of purple willow (Salix purpurea) to arsenic stress. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.01115.
Zachos J, Pagani H, Sloan L, Thomas E, Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001;292:686–93.
Article
CAS
Google Scholar
Jia H, Yang H, Sun P, Li J, Zhang J, Guo Y, et al. De novo transcriptome assembly, development of EST-SSR markers and population genetic analyses for the desert biomass willow. Salix psammophila Sci Rep. 2016;6:39591.
Article
CAS
Google Scholar
Liu J, Yin T, Ye N, Chen Y, Yin T, Liu M, et al. Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis). PLoS One. 2013;8:e60181.
Article
CAS
Google Scholar
Niu SH, Li ZX, Yuan HW, Chen XY, Li Y, Li W. Transcriptome characterisation of Pinus tabuliformis and evolution of genes in the Pinus phylogeny. BMC Genomics. 2013;14:263.
Article
CAS
Google Scholar
Koenig D, Jimenez-Gomez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, et al. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci. 2013;110:E2655–62. https://doi.org/10.1073/pnas.1309606110.
Article
CAS
PubMed
Google Scholar
Davidson RM, Gowda M, Moghe G, Lin H, Vaillancourt B, Shiu SH, et al. Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution. Plant J. 2012;71:492–502.
CAS
PubMed
Google Scholar
Liu T, Tang S, Zhu S, Tang Q, Zheng X. Transcriptome comparison reveals the patterns of selection in domesticated and wild ramie (Boehmeria nivea L. gaud). Plant Mol Biol. 2014;86:85–92.
Article
CAS
Google Scholar
Zhao Y, Cao Y, Wang J, Xiong Z. Transcriptome sequencing of Pinus kesiya var langbianensis and comparative analysis in the Pinus phylogeny. BMC Genomics. 2018;19:725. https://doi.org/10.1186/s12864-018-5127-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science (80- ). 2006;313:1596–604.
Article
CAS
Google Scholar
Hossain MA, Mostofa MG, Fujita M. Cross Protection by Cold-shock to Salinity and Drought Stress-induced Oxidative Stress in Mustard (Brassica campestris L.) Seedlings. Mol Plant Breed. 2013. https://doi.org/10.5376/mpb.2013.04.0007.
Li Y, Yan M, Yang J, Raman I, Du Y, Min S, et al. Glutathione S-transferase mu 2-transduced mesenchymal stem cells ameliorated anti-glomerular basement membrane antibody-induced glomerulonephritis by inhibiting oxidation and inflammation. Stem Cell Res Ther. 2014;5(1):19.
Article
Google Scholar
Chu G, Li Y, Dong X, Liu J, Zhao Y. Role of NSD1 in H2O2-induced GSTM3 suppression. Cell Signal. 2014;26:2757–64.
Article
CAS
Google Scholar
Deng S, Sun J, Zhao R, Ding M, Zhang Y, Sun Y, et al. Populus euphratica APYRASE2 enhances cold tolerance by modulating vesicular trafficking and extracellular ATP in Arabidopsis plants. Plant Physiol. 2015;169:530–48. https://doi.org/10.1104/pp.15.00581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho CW, Lee HJ, Chung E, Kim KM, Heo JE, Kim JI, et al. Molecular characterization of the soybean L-asparaginase gene induced by low temperature stress. Mol Cells. 2007;23:280–6 http://www.molcells.org/journal/download_pdf.php?spage=280&volume=23&number=3.
CAS
PubMed
Google Scholar
Meng D, Yu X, Ma L, Hu J, Liang Y, Liu X, et al. Transcriptomic response of Chinese yew (Taxus chinensis) to cold stress. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.00468.
van Buer J, Cvetkovic J, Baier M. Cold regulation of plastid ascorbate peroxidases serves as a priming hub controlling ROS signaling in Arabidopsis thaliana. BMC Plant Biol. 2016;16(1):163.
Article
Google Scholar
Heddad M, Adamska I. Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family. Proc Natl Acad Sci U S A. 2000;97:3741–6.
Article
CAS
Google Scholar
Siegele DA. Universal stress proteins in Escherichia coli. J Bacteriol. 2005;187:6253–4.
Article
CAS
Google Scholar
Tkaczuk KL, Shumilin IA, Chruszcz M, Evdokimova E, Savchenko A, Minor W. Structural and functional insight into the universal stress protein family. Evol Appl. 2013;6:434–49.
Article
CAS
Google Scholar
O’Connor A, McClean S. The role of universal stress proteins in bacterial infections. Curr Med Chem. 2017;24. https://doi.org/10.2174/0929867324666170124145543.
Naafs BDA, Rohrssen M, Inglis GN, Lähteenoja O, Feakins SJ, Collinson ME, et al. High temperatures in the terrestrial mid-latitudes during the early Palaeogene. Nature Geoscience. 2018;11(10):–766.
Jenkyns HC, Weedon GP. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2003. p. 1885–916.
Contreras L, Pross J, Bijl PK, O’Hara RB, Raine JI, Sluijs A, et al. Southern high-latitude terrestrial climate change during the Palaeocene-Eocene derived from a marine pollen record (ODP site 1172, East Tasman plateau). Clim Past. 2014;10:1401–20.
Article
Google Scholar
Böhme M. The Miocene climatic optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol. 2003;195:389–401.
Article
Google Scholar
Herold N, You Y, Müller RD, Seton M. Climate model sensitivity to changes in Miocene paleotopography. Aust J Earth Sci. 2009;56:1049–59.
Article
CAS
Google Scholar
Pound MJ, Haywood AM, Salzmann U, Riding JB. Global vegetation dynamics and latitudinal temperature gradients during the mid to Late Miocene (15.97-5.33Ma). Earth Sci Rev. 2012;112:1–22.
Article
Google Scholar
Gibbard PL, Woodcock NH. The Quaternary: History of an Ice Age. In: Geological History of Britain and Ireland. 2nd ed; 2012. p. 409–28.
Chapter
Google Scholar
Vroege PW, Stelleman P. Insect and wind pollination in Saux Repens L. and Saux Caprea L. Isr J Bot. 1990;39:1613–9.
Google Scholar
Peeters L, Totland Ø. Wind to insect pollination ratios and floral traits in five alpine Salix species. Can J Bot. 1999;77:556–63. https://doi.org/10.1139/b99-003.
Article
Google Scholar
Tamura S, Kudo G. Wind pollination and insect pollination of two temperate willow species, Salix miyabeana and Salix sachalinensis. Plant Ecol. 2000;147:185–92.
Article
Google Scholar
Zheng H, Clift PD, Wang P, Tada R, Jia J, He M, et al. Pre-Miocene birth of the Yangtze River. Proc Natl Acad Sci. 2013;110:7556–61. https://doi.org/10.1073/pnas.1216241110.
Article
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
Article
CAS
Google Scholar
Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics. 2010;26:680–2.
Article
CAS
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
Article
CAS
Google Scholar
Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89.
Article
CAS
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
Article
CAS
Google Scholar
Blanc G. Widespread Paleopolyploidy in model plant species inferred from age distributions of duplicate genes. PLANT CELL ONLINE. 2004;16:1667–78. https://doi.org/10.1105/tpc.021345.
Article
CAS
Google Scholar
Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, et al. ClustalW and ClustalX version 2. Bioinformatics. 2007;23:2947–8.
Article
CAS
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
Article
CAS
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
CAS
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
Article
CAS
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Article
CAS
Google Scholar