Thiellement H, Bahrman N, Damerval C, Plomion C, Rossignol M, Santoni V, et al. Proteomics for genetic and physiological studies in plants. Electrophoresis. 1999;20:2013–26.
Article
CAS
Google Scholar
Parkhey S, Chandrakar V, Naithani SC, Keshavkant S. Efficient extraction of proteins from recalcitrant plant tissue for subsequent analysis by two-dimensional gel electrophoresis. J Sep Sci. 2015;38:3622–8.
Article
CAS
Google Scholar
Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, et al. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 2001;126:835–48.
Article
CAS
Google Scholar
Hoa le TP, Nomura M, Kajiwara H, Day DA, Tajima S. Proteomic analysis on symbiotic differentiation of mitochondria in soybean nodules. Plant Cell Physiol. 2004;45:300–8.
Article
Google Scholar
Rabilloud T. How to use 2D gel electrophoresis in plant proteomics. Methods Mol Biol. 2014;1072:43–50.
Article
CAS
Google Scholar
Wang X, Wang D, Sun Y, Yang Q, Chang L, Wang L, et al. Comprehensive proteomics analysis of laticifer latex reveals new insights into ethylene stimulation of natural rubber production. Sci Rep. 2015;5:13778.
Article
Google Scholar
Yang H, Liu N, Liu S. Determination of peptide and protein disulfide linkages by MALDI mass spectrometry. Top Curr Chem. 2013;331:79–116.
Article
CAS
Google Scholar
Nahnsen S, Bielow C, Reinert K, Kohlbacher O. Tools for label-free peptide quantification. Mol Cell Proteomics. 2013;12:549–56.
Article
CAS
Google Scholar
Merrill AE, Coon JJ. Quantifying proteomes and their post-translational modifications by stable isotope label-based mass spectrometry. Curr Opin Chem Biol. 2013;17:779–86.
Article
CAS
Google Scholar
Komatsu S, Wang X, Yin X, Nanjo Y, Ohyanagi H, Sakata K. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through soybean proteome database. J Proteome. 2017;163:52–66.
Article
CAS
Google Scholar
Jin X, Wang L, He L, Feng W, Wang X. Two-dimensional gel electrophoresis-based analysis provides global insights into the cotton ovule and fiber proteomes. Sci China Life Sci. 2016;59:154–63.
Article
CAS
Google Scholar
Nanjo Y, Nouri MZ, Komatsu S. Quantitative proteomic analyses of crop seedlings subjected to stress conditions; a commentary. Phytochemistry. 2010;72:1263–72.
Article
Google Scholar
Li H, Qin Y, Pang Y, Song W, Mei W, Zhu Y. A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development. New Phytol. 2007;175:462–71.
Article
CAS
Google Scholar
Wang X, Li Q, Jin X, Xiao GH, Liu GJ, Liu NJ, et al. Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation. J Proteome. 2015;114:16–27.
Article
CAS
Google Scholar
Zheng X, Fan S, Wei H, Tao C, Ma Q, Ma Q, et al. iTRAQ-based quantitative proteomic analysis reveals cold responsive proteins involved in leaf senescence in upland cotton (Gossypium hirsutum L.). Int J Mol Sci. 2017;16:18.
Article
Google Scholar
Zhou T, Yang X, Guo K, Deng J, Xu J, Gao W, et al. ROS homeostasis regulates somatic embryogenesis via the regulation of auxin signaling in cotton. Mol Cell Proteomics. 2016;15:2108–24.
Article
CAS
Google Scholar
Tao C, Jin X, Zhu L, Li H. Two-dimensional gel electrophoresis-based proteomic analysis reveals N-terminal truncation of the Hsc70 protein in cotton fibers in vivo. Sci Rep. 2016;6:36961.
Article
CAS
Google Scholar
Joy AP, Ayre DC, Chute IC, Beauregard AP, Wajnberg G, Ghosh A, et al. Proteome profiling of extracellular vesicles captured with the affinity peptide Vn96: comparison of Laemmli and TRIzol protein-extraction methods. J Extracell Vesicles. 2018;7:1438727.
Article
Google Scholar
Wang D, Sun Y, Tong Z, Yang Q, Chang L, Meng X, et al. A protein extraction method for low protein concentration solutions compatible with the proteomic analysis of rubber particles. Electrophoresis. 2016;37:2930–9.
Article
CAS
Google Scholar
Singh N, Jain N, Kumar R, Jain A, Singh NK, Rai V. A comparative method for protein extraction and 2-D gel electrophoresis from different tissues of Cajanus cajan. Front Plant Sci. 2015;6:606.
PubMed
PubMed Central
Google Scholar
Wang N, Wu X, Ku L, Chen Y, Wang W. Evaluation of three protein-extraction methods for proteome analysis of maize leaf midrib, a compound tissue rich in sclerenchyma cells. Front Plant Sci. 2016;7:856.
PubMed
PubMed Central
Google Scholar
Jiang Z, Kumar M, Padula MP, Pernice M, Kahlke T, Kim M, et al. Development of an efficient protein extraction method compatible with LC-MS/MS for proteome mapping in two Australian seagrasses Zostera muelleri and Posidonia australis. Front Plant Sci. 2017;8:1416.
Article
Google Scholar
Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B. Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics. 2005;5:2497–507.
Article
CAS
Google Scholar
Wang L, Wang X, Jin X, Jia R, Huang Q, Tan Y, et al. Comparative proteomics of Bt-transgenic and non-transgenic cotton leaves. Proteome Sci. 2015b;13:15.
Article
Google Scholar
Wang X, Shi M, Lu X, Ma R, Wu C, Guo A, et al. A method for protein extraction from different subcellular fractions of laticifer latex in Hevea brasiliensis compatible with 2-DE and MS. Proteome Sci. 2010;8:35.
Article
Google Scholar
Al-Obaidi JR, Saidi NB, Usuldin SR, Hussin SN, Yusoff NM, Idris A. Comparison of different protein extraction methods for gel-based proteomic analysis of Ganoderma spp. Protein J. 2016;35:100–6.
Article
CAS
Google Scholar
Wang X, Li X, Deng X, Han H, Shi W, Li Y. A protein extraction method compatible with proteomic analysis for the euhalophyte Salicornia europaea. Electrophoresis. 2007;28:3976–87.
Article
CAS
Google Scholar
Kumar GP, Subiramani S, Govindarajan S, Sadasivam V, Manickam V, Mogilicherla K, et al. Evaluation of different carbon sources for high frequency callus culture with reduced phenolic secretion in cotton (Gossypium hirsutum L.) cv. SVPR-2. Biotechnol Rep. 2015;7:72–80.
Article
Google Scholar
Uyanik M, Mutsuga T, Ishihara K. IBS-catalyzed regioselective oxidation of phenols to 1,2-quinones with Oxone. Molecules. 2012;17:8604–16.
Article
CAS
Google Scholar
Kroll J, Rawel HM, Rohn S, Czajka D. Interactions of glycinin with plant phenols--influence on chemical properties and proteolytic degradation of the proteins. Nahrung. 2001;45:388–9.
Article
CAS
Google Scholar
Vilhena MB, Franco MR, Schmidt D, Carvalho G, Azevedo RA. Evaluation of protein extraction methods for enhanced proteomic analysis of tomato leaves and roots. An Acad Bras Cienc. 2015;87:1853–63.
Article
CAS
Google Scholar
Jiang X, Wang J, Chan L, Lam P, Gu J. Comparison of three protein extraction procedures from toxic and non-toxic dinoflagellates for proteomics analysis. Ecotoxicology. 2015;24:1395–406.
Article
CAS
Google Scholar
Shen K, Sun J, Cao X, Zhou D, Li J. Comparison of different buffers for protein extraction from formalin-fixed and paraffin-embedded tissue specimens. PLoS One. 2015;10:e0142650.
Article
Google Scholar
Brioschi M, Baetta R, Ghilardi S, Gianazza E, Guarino A, Parolari A, et al. Normal human mitral valve proteome: a preliminary investigation by gel-based and gel-free proteomic approaches. Electrophoresis. 2016;37:2633–43.
Article
CAS
Google Scholar
Rodríguez de Francisco L, Romero-Rodríguez MC, Navarro-Cerrillo RM, Miniño V, Perdomo O, et al. Characterization of the orthodox Pinus occidentalis seed and pollen proteomes by using complementary gel-based and gel-free approaches. J Proteome. 2016;143:382–9.
Article
Google Scholar
Ferreira R, Rocha H, Almeida V, Padrão AI, Santa C, Vilarinho L, et al. Mitochondria proteome profiling: a comparative analysis between gel- and gel-free approaches. Talanta. 2013;115:277–83.
Article
CAS
Google Scholar
Pirovani CP, Carvalho HA, Machado RC, Gomes DS, Alvim FC, Pomella AW, et al. Protein extraction for proteome analysis from cacao leaves and meristems, organs infected by Moniliophthora perniciosa, the causal agent of the witches’ broom disease. Electrophoresis. 2008;29:2391–401.
Article
CAS
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem. 1976;72:248–54.
Article
CAS
Google Scholar
Wang X, Fan P, Song H, Chen X, Li X, Li Y. Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. J Proteome Res. 2009;8:3331–45.
Article
CAS
Google Scholar
Wang X, Wang D, Wang D, Wang H, Chang L, Yi X, et al. Systematic comparison of technical details in CBB methods and development of a sensitive GAP stain for comparative proteomic analysis. Electrophoresis. 2012;33:296–306.
Article
Google Scholar
Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33:531–7.
Article
CAS
Google Scholar
Medzihradszky KF. In-solution digestion of proteins for mass spectrometry. Methods Enzymol. 2005;405:50–65.
Article
CAS
Google Scholar
Chao Q, Gao Z, Wang Y, Li Z, Huang X, Wang Y, et al. The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins. Plant Mol Biol. 2016;91:287–304.
Article
CAS
Google Scholar
Ma J, Chen T, Wu S, Yang C, Bai M, Shu K, et al. iProX: an integrated proteome resource. Nucleic Acids Res. 2019;47:1211–7.
Article
Google Scholar