Brooks S, Tyler CR, Sumpter JP. Egg quality in fish: what makes a good egg? Rev Fish Biol Fish. 1997;7(4):387–416.
Article
Google Scholar
Vehvilainen H, Kause A, Koskinen H, Paananen T. Genetic architecture of rainbow trout survival from egg to adult. Genet Res. 2010;92(1):1–11.
Article
Google Scholar
Su GS, Liljedahl LE, Gall GAE. Genetic and environmental variation of female reproductive traits in rainbow trout (Oncorhynchus mykiss). Aquaculture. 1997;154(2):115–24.
Article
Google Scholar
Blom JH, Dabrowski K. Reproductive success of female rainbow-trout (Oncorhynchus-Mykiss) in response to graded dietary Ascorbyl monophosphate levels. Biol Reprod. 1995;52(5):1073–80.
Article
CAS
PubMed
Google Scholar
Bromage NRaC, P.R.T. (ed.): Egg production in rainbow trout. Croom Helm., London; 1988.
Palace VP, Werner J. Vitamins a and E in the maternal diet influence egg quality and early life stage development in fish: a review. Sci Mar. 2006;70:41–57.
Article
CAS
Google Scholar
Contreras-Sanchez WM, Schreck CB, Fitzpatrick MS, Pereira CB. Effects of stress on the reproductive performance of rainbow trout (Oncorhynchus mykiss). Biol Reprod. 1998;58(2):439–47.
Article
CAS
PubMed
Google Scholar
Campbell PM, Pottinger TG, Sumpter JP. Stress reduces the quality of gametes produced by rainbow-trout. Biol Reprod. 1992;47(6):1140–50.
Article
CAS
PubMed
Google Scholar
Bonnet E, Fostier A, Bobe J. Characterization of rainbow trout egg quality: a case study using four different breeding protocols, with emphasis on the incidence of embryonic malformations. Theriogenology. 2007;67(4):786–94.
Article
PubMed
Google Scholar
Aegerter S, Jalabert B. Effects of post-ovulatory oocyte ageing and temperature on egg quality and on the occurrence of triploid fry in rainbow trout, Oncorhynchus mykiss. Aquaculture. 2004;231(1–4):59–71.
Article
Google Scholar
Lahnsteiner F. Morphological, physiological and biochemical parameters characterizing the over-ripening of rainbow trout eggs. Fish Physiol Biochem. 2000;23(2):107–18.
Article
CAS
Google Scholar
Springate JRC, Bromage NR, Elliott JAK, Hudson DL. The timing of ovulation and stripping and their effects on the rates of fertilization and survival to eying, hatch and swim-up in the rainbow-trout (Salmo-Gairdneri R). Aquaculture. 1984;43(1–3):313–22.
Article
Google Scholar
Craik JCA, Harvey SM. Egg quality in rainbow-trout - the relation between egg viability, selected aspects of egg composition, and time of stripping. Aquaculture. 1984;40(2):115–34.
Article
CAS
Google Scholar
Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Development. 2009;136(18):3033–42.
Article
CAS
PubMed
Google Scholar
Lyman-Gingerich J, Pelegri F. Maternal factors in fish oogenesis and embryonic development. In: Babin PJ, Cerda J, Labadie K, editors. The fish oocyte: from basic studies to biotechnological applications. Dordrecht, The Netherlands: Springer; 2007. p. 141–74.
Chapter
Google Scholar
Lubzens E, Bobe J, Young G, Sullivan CV. Maternal investment in fish oocytes and eggs: the molecular cargo and its contributions to fertility and early development. Aquaculture. 2017;472(1):37.
Google Scholar
Sullivan CV, Chapman RW, Reading BJ, Anderson PE. Transcriptomics of mRNA and egg quality in farmed fish: some recent developments and future directions. Gen Comp Endocrinol. 2015;221:23–30.
Article
CAS
PubMed
Google Scholar
Klangnurak W, Fukuyo T, Rezanujjaman MD, Seki M, Sugano S, Suzuki Y, Tokumoto T. Candidate gene identification of ovulation-inducing genes by RNA sequencing with an in vivo assay in zebrafish. PLoS One. 2018;13(5):e0196544.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aegerter S, Jalabert B, Bobe J. mRNA stockpile and egg quality in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem. 2003;28(1–4):317–8.
Article
CAS
Google Scholar
Aegerter S, Jalabert B, Bobe J. Large scale real-time PCR analysis of mRNA abundance in rainbow trout eggs in relationship with egg quality and post-ovulatory ageing. Mol Reprod Dev. 2005;72(3):377–85.
Article
CAS
PubMed
Google Scholar
Aegerter S, Jalabert B, Bobe J. Messenger RNA stockpile of cyclin B, insulin-like growth factor I, insulin-like growth factor II, insulin-like growth factor receptor Ib, and p53 in the rainbow trout oocyte in relation with developmental competence. Mol Reprod Dev. 2004;67(2):127–35.
Article
CAS
PubMed
Google Scholar
Bonnet E, Fostier A, Bobe J. Microarray-based analysis of fish egg quality after natural or controlled ovulation. BMC Genomics. 2007;8.
Bonnet E, Montfort J, Esquerre D, Hugot K, Fostier A, Bobe J. Effect of photoperiod manipulation on rainbow trout (Oncorhynchus mykiss) egg quality: a genomic study. Aquaculture. 2007;268(1–4):13–22.
Article
Google Scholar
Nagler JJ, Cavileer TD, Stoddard JW, Parsons JE. Maternal mRNA differences in unfertilized rainbow trout (Oncorhynchus mykiss) eggs from batches exhibiting variable embryonic survival. Cybium. 2008;32(2):233.
Google Scholar
Ma H, Weber GM, Wei HR, Yao JB. Identification of mitochondrial genome-encoded small RNAs related to egg deterioration caused by postovulatory aging in rainbow trout. Mar Biotechnol. 2016;18(5):584–97.
Article
CAS
Google Scholar
Ma H, Weber GM, Hostuttler MA, Wei H, Wang L, Yao J. MicroRNA expression profiles from eggs of different qualities associated with post-ovulatory ageing in rainbow trout (Oncorhynchus mykiss). BMC Genomics. 2015;16:201.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bachvarova RF. A maternal tail of poly(a) - the long and the short of it. Cell. 1992;69(6):895–7.
Article
CAS
PubMed
Google Scholar
Pique M, Lopez JM, Foissac S, Guigo R, Mendez R. A combinatorial code for CPE-mediated translational control. Cell. 2008;132(3):434–48.
Article
CAS
PubMed
Google Scholar
Villalba A, Coll O, Gebauer F. Cytoplasmic polyadenylation and translational control. Curr Opin Genet Dev. 2011;21(4):452–7.
Article
CAS
PubMed
Google Scholar
Cui J, Sartain CV, Pleiss JA, Wolfner MF. Cytoplasmic polyadenylation is a major mRNA regulator during oogenesis and egg activation in Drosophila. Dev Biol. 2013;383(1):121–31.
Article
CAS
PubMed
Google Scholar
Slater DW, Slater I, Gillespie D. Post-fertilization synthesis of Polyadenylic acid in sea-urchin embryos. Nature. 1972;240(5380):333.
Article
CAS
PubMed
Google Scholar
Rosenthal ET, Tansey TR, Ruderman JV. Sequence-specific Adenylations and Deadenylations accompany changes in the translation of maternal messenger-Rna after fertilization of Spisula oocytes. J Mol Biol. 1983;166(3):309–27.
Article
CAS
PubMed
Google Scholar
Paris J, Philippe M. Poly(a) metabolism and polysomal recruitment of maternal mRNAs during early Xenopus development. Dev Biol. 1990;140(1):221–4.
Article
CAS
PubMed
Google Scholar
Brevini-Gandolfi TAL, Favetta LA, Mauri L, Luciano AM, Cillo F, Gandolfi F. Changes in poly(a) tail length of maternal transcripts during in vitro maturation of bovine oocytes and their relation with developmental competence. Mol Reprod Dev. 1999;52(4):427–33.
Article
CAS
PubMed
Google Scholar
Blower MD, Jambhekar A, Schwarz DS, Toombs JA. Combining different mRNA capture methods to analyze the transcriptome: analysis of the Xenopus laevis transcriptome. PLoS One. 2013;8(10).
Gohin M, Fournier E, Dufort I, Sirard MA. Discovery, identification and sequence analysis of RNAs selected for very short or long poly a tail in immature bovine oocytes. Mol Hum Reprod. 2014;20(2):127–38.
Article
CAS
PubMed
Google Scholar
Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP. Poly(a)-tail profiling reveals an embryonic switch in translational control. Nature. 2014;508(7494):66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reyes JM, Chitwood JL, Ross PJ. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation. Mol Reprod Dev. 2015;82(2):103–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meijer HA, Bushell M, Hill K, Gant TW, Willis AE, Jones P, de Moor CH. A novel method for poly(a) fractionation reveals a large population of mRNAs with a short poly(a) tail in mammalian cells. Nucleic Acids Res. 2007;35(19).
Cabada MO, Darnbrough C, Ford PJ, Turner PC. Differential accumulation of two size classes of poly(a) associated with messenger RNA during oogenesis in Xenopus laevis. Dev Biol. 1977;57(2):427–39.
Article
CAS
PubMed
Google Scholar
Nagler JJ, Parsons JE, Cloud JG. Single pair mating indicates maternal effects on embryo survival in rainbow trout, Oncorhynchus mykiss. Aquaculture. 2000;184(1–2):177–83.
Article
Google Scholar
Jensen JOT. New mechanical shock sensitivity units in support of criteria for protection of salmonid eggs from blasting or seismic disturbance. Can Tech Rep Fish Aquat Sci. 2003(2452):27.
Jensen JOT, Alderdice DF. Comparison of mechanical shock sensitivity of eggs of five Pacific salmon (Oncorhynchus) species and steelhead trout (Salmo gairdneri). Aquaculture. 1989;78:19.
Article
Google Scholar
Marlow FL. Maternal Control of Development in Vertebrates. CA: My Mother Made Me Do It! San Rafael; 2010.
Book
Google Scholar
Kane DA, Kimmel CB. The zebrafish Midblastula transition. Development. 1993;119(2):447–56.
CAS
PubMed
Google Scholar
Zamir E, Kam Z, Yarden A. Transcription-dependent induction of G1 phase during the zebra fish midblastula transition. Mol Cell Biol. 1997;17(2):529–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mathavan S, Lee SGP, Mak A, Miller LD, Murthy KRK, Govindarajan KR, Tong Y, Wu YL, Lam SH, Yang H, et al. Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet. 2005;1(2):260–76.
Article
CAS
PubMed
Google Scholar
Kleppe L, Edvardsen RB, Kuhl H, Malde K, Furmanek T, Drivenes O, Reinhardt R, Taranger GL, Wargelius A. Maternal 3'UTRs: from egg to onset of zygotic transcription in Atlantic cod. BMC Genomics. 2012;13:443.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall TE, Smith P, Johnston IA. Stages of embryonic development in the Atlantic cod Gadus morhua. J Morphol. 2004;259(3):255–70.
Article
PubMed
Google Scholar
Kraeussling M, Wagner TU, Schartl M. Highly asynchronous and asymmetric cleavage divisions accompany early transcriptional activity in pre-blastula Medaka embryos. PLoS One. 2011;6(7).
Stoddard JW, Parsons JE, Nagler JJ. Early onset of embryonic mortality in sub-fertile families of rainbow trout (Oncorhynchus mykiss). Reprod Fertil Dev. 2005;17(8):785–90.
Article
CAS
PubMed
Google Scholar
Fernandez-Silva P, Enriquez JA, Montoya J. Replication and transcription of mammalian mitochondrial DNA. Exp Physiol. 2003;88(1):41–56.
Article
CAS
PubMed
Google Scholar
Temperley RJ, Wydro M, Lightowlers RN, Chrzanowska-Lightowlers ZM. Human mitochondrial mRNAs-like members of all families, similar but different. Bba-Bioenergetics. 2010;1797(6–7):1081–5.
Article
CAS
PubMed
Google Scholar
Curanovic D, Cohen M, Singh I, Slagle CE, Leslie CS, Jaffrey SR. Global profiling of stimulus-induced polyadenylation in cells using a poly(a) trap. Nat Chem Biol. 2013;9(11):671.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richter JD. Cytoplasmic polyadenylation in development and beyond. Microbiol Mol Biol R. 1999;63(2):446–+.
CAS
Google Scholar
Wai T, Ao A, Zhang XY, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod. 2010;83(1):52–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chappel S. The role of mitochondria from mature oocyte to viable blastocyst. Obstet Gynecol Int. 2013;2013:183024.
Article
PubMed
PubMed Central
Google Scholar
Artuso L, Romano A, Verri T, Domenichini A, Argenton F, Santorelli FM, Petruzzella V. Mitochondrial DNA metabolism in early development of zebrafish (Danio rerio). Bba-Bioenergetics. 2012;1817(7):1002–11.
Article
CAS
PubMed
Google Scholar
St John J. The control of mtDNA replication during differentiation and development. Bba-Gen Subjects. 2014;1840(4):1345–54.
Article
CAS
Google Scholar
Bai J, Solberg C, Fernandes JMO, Johnston IA. Profiling of maternal and developmental-stage specific mRNA transcripts in Atlantic halibut Hippoglossus hippoglossus. Gene. 2007;386:202–10.
Article
CAS
PubMed
Google Scholar
Schatten H, Sun QY, Prather R. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod Biol Endocrin. 2014;12:1–11.
Article
CAS
Google Scholar
Shoubridge EA, Wai T. Mitochondrial DNA and the mammalian oocyte. Mitochondrion Germline Early Dev. 2007;77:87–111.
Article
CAS
Google Scholar
Sanchez-Velar N, Udofia EB, Yu Z, Zapp ML. hRIP, a cellular cofactor for rev function, promotes release of HIV RNAs from the perinuclear region. Genes Dev. 2004;18(1):23–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Catrina IE, Bayer LV, Yanez G, McLaughlin JM, Malaczek K, Bagaeva E, Marras SAE, Bratu DP. The temporally controlled expression of Drongo, the fruit fly homolog of AGFG1, is achieved in female germline cells via P-bodies and its localization requires functional Rab11. RNA Biol. 2016;13(11):1117–32.
Article
PubMed
PubMed Central
Google Scholar
Gentil BJ, Delphin C, Mbele GO, Deloulme JC, Ferro M, Garin J, Baudier J. The giant protein AHNAK is a specific target for the calcium- and zinc-binding S100B protein - potential implications for Ca2+ homeostasis regulation by S100B. J Biol Chem. 2001;276(26):23253–61.
Article
CAS
PubMed
Google Scholar
Doidge R, Mittal S, Aslam A, Winkler GS. The anti-proliferative activity of BTG/TOB proteins is mediated via the Caf1a (CNOT7) and Caf1b (CNOT8) Deadenylase subunits of the Ccr4-not complex. PLoS One. 2012;7(12).
Matsuda S, KawamuraTsuzuku J, Ohsugi M, Yoshida M, Emi M, Nakamura Y, Onda M, Yoshida Y, Nishiyama A, Yamamoto T. Tob, a novel protein that interacts with p185(erbB2), is associated with antiproliferative activity. Oncogene. 1996;12(4):705–13.
CAS
PubMed
Google Scholar
Mauxion F, Chen CYA, Seraphin B, Shyu AB. BTG/TOB factors impact deadenylases. Trends Biochem Sci. 2009;34(12):640–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Migaud H, Bell G, Cabrita E, McAndrew B, Davie A, Bobe J, Herraez MP, Carrillo M. Gamete quality and broodstock management in temperate fish. Rev Aquacult. 2013;5:S194–223.
Article
Google Scholar
Chapman RW, Reading BJ, Sullivan CV. Ovary transcriptome profiling via artificial intelligence reveals a transcriptomic fingerprint predicting egg quality in striped bass, Morone saxatilis. PLoS One. 2014;9(5).
Zardoya R, GarridoPertierra A, Bautista JM. The complete nucleotide sequence of the mitochondrial DNA genome of the rainbow trout, Oncorhynchus mykiss. J Mol Evol. 1995;41(6):942–51.
Article
CAS
PubMed
Google Scholar
Slomovic S, Laufer D, Geiger D, Schuster G. Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol Cell Biol. 2005;25(15):6427–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baserga SJ, Linnenbach AJ, Malcolm S, Ghosh P, Malcolm ADB, Takeshita K, Forget BG, Benz EJ. Polyadenylation of a human mitochondrial ribosomal-Rna transcript detected by molecular-cloning. Gene. 1985;35(3):305–12.
Article
CAS
PubMed
Google Scholar
Rorbach J, Minczuk M. The post-transcriptional life of mammalian mitochondrial RNA. Biochem J. 2012;444:357–73.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12).
Dutta A, Sinha DK. Zebrafish lipid droplets regulate embryonic ATP homeostasis to power early development. Open Biol. 2017;7(7).
Wendling NC, Bencic DC, Nagler JJ, Cloud JG, Ingermann RL. Adenosine triphosphate levels in steelhead (Oncorhynchus mykiss) eggs: an examination of turnover, localization and role. Comp Biochem Phys A. 2004;137(4):739–48.
Article
CAS
Google Scholar
Cagnone GLM, Tsai TS, Makanji Y, Matthews P, Gould J, Bonkowski MS, Elgass KD, Wong ASA, Wu LE, McKenzie M, et al. Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. Sci Rep-Uk. 2016;6.
Dumollard R, Duchen M, Sardet C. Calcium signals and mitochondria at fertilisation. Semin Cell Dev Biol. 2006;17(2):314–23.
Article
CAS
PubMed
Google Scholar
Ge HS, Tollner TL, Hu Z, Dai MM, Li XH, Guan HQ, Shan D, Zhang XJ, Lv JQ, Huang CJ, et al. The importance of mitochondrial metabolic activity and mitochondrial DNA replication during oocyte maturation in vitro on oocyte quality and subsequent embryo developmental competence. Mol Reprod Dev. 2012;79(6):392–401.
Article
CAS
PubMed
Google Scholar
Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9).
Ma H, Gao G, Weber GM. Use of DAVID algorithms for clustering custom annotated gene lists in a non-model organism, rainbow trout. BMC Res Notes. 2018;11(63):1–6.
Google Scholar
Hershberger WK, Hostuttler MA. Variation in time to first cleavage in rainbow trout Oncorhynchus mykiss embryos: a major factor in induction of tetraploids. J World Aquacult Soc. 2005;36(1):96–102.
Article
Google Scholar
Velsen FPJ. Embryonic development in eggs of sockeye salmon, Oncorhynchus nerka. Can Spec Publ Fish Aquat Sci. 1980;49:1–19.
Google Scholar
Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noel B, Bento P, Da Silva C, Labadie K, Alberti A, et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun. 2014;5.
Kodama S, Yamada H, Annab L, Barrett JC. Elevated expression of mitochondrial cytochrome-B and Nadh dehydrogenase Subunit-4/4l genes in senescent human-cells. Exp Cell Res. 1995;219(1):82–6.
Article
CAS
PubMed
Google Scholar
Abernathy J, Overturf K. Comparison of ribosomal RNA removal methods for transcriptome sequencing workflows in teleost fish. Anim Biotechnol. 2016;27(1):60–5.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–U354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Gotz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:619832.
Article
PubMed
CAS
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
Article
CAS
Google Scholar
Zhang HS, Maguire D, Swarts S, Sun WM, Yang SM, Wang W, Liu CM, Zhang M, Zhang D, Zhang L, et al. Replication of murine mitochondrial DNA following irradiation. Adv Exp Med Biol. 2009;645:43–8.
Article
CAS
PubMed
PubMed Central
Google Scholar