Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol. 2002;5:94–100.
Article
CAS
Google Scholar
Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 2011;12:499–510.
Article
CAS
Google Scholar
Allard A, Bink MCAM, Martinez S, Kelner JJ, Legave JM, Di Guardo M, et al. Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. J Exp Bot. 2016;67:2875–88.
Article
CAS
Google Scholar
Frett TJ, Reighard GL, Okie WR, Gasic K. Mapping quantitative trait loci associated with blush in peach [Prunus persica (L.) Batsch]. Tree Genet Genomes. 2014;10:367–81.
Article
Google Scholar
Grattapaglia D, Silva-Junior OB, Kirst M, de Lima BM, Faria DA, Pappas GJ. High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species. BMC Plant Biol. 2011;11:65.
Article
CAS
Google Scholar
Hackett CA, McLean K, Bryan GJ. Linkage analysis and QTL mapping using SNP dosage data in a tetraploid potato mapping population. PLoS One. 2013;8:e63939.
Article
Google Scholar
Montanari S, Perchepied L, Renault D, Frijters L, Velasco R, Horner M, et al. A QTL detected in an interspecific pear population confers stable fire blight resistance across different environments and genetic backgrounds. Mol Breed. 2016;36:47.
Article
Google Scholar
Desgroux A, Anthoëne VL, Roux-duparque M, Rivière J, Aubert G, Tayeh N, et al. Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics. 2016;17:1–21.
Kumar S, Garrick DJ, Bink MC, Whitworth C, Chagné D, Volz RK. Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics. 2013;14:393.
Article
CAS
Google Scholar
Mckown AD, Klápště J, Guy RD, Geraldes A, Porth I, Hannemann J, et al. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytol. 2014;203:535–53.
Article
CAS
Google Scholar
Kumar S, Chagné D, Bink MC. A M, Volz RK, Whitworth C, Carlisle C. genomic selection for fruit quality traits in apple (Malus x domestica Borkh.). PLoS One. 2012;7:e36674.
Article
CAS
Google Scholar
Poland J, Endelman J, Dawson J, Rutkoski J, Wu SY, Manes Y, et al. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome. 2012;5:103–13.
Article
CAS
Google Scholar
Zhao Y, Gowda M, Liu W, Würschum T, Maurer HP, Longin FH, et al. Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet. 2012;124:769–76.
Article
Google Scholar
Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. PNAS. 2013;110:8057–62.
Article
CAS
Google Scholar
Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P, Muchero W, et al. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet. Nature Publishing Group. 2014;46:1089–96.
Article
CAS
Google Scholar
Micheletti D, Dettori MT, Micali S, Aramini V, Pacheco I, Da Silva LC, et al. Whole-genome analysis of diversity and SNP-major gene association in peach germplasm. PLoS One. 2015;10:e0136803.
Article
Google Scholar
Sim SC, van Deynze A, Stoffel K, Douches DS, Zarka D, Ganal MW, et al. High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS One. 2012;7:1–18.
Google Scholar
Wu J, Wang Y, Xu J, Korban SS, Fei Z, Tao S, et al. Diversification and independent domestication of Asian and European pears. Genome Biol. 2018;19:77.
Article
Google Scholar
Lespinasse Y, Chevalier M, Durel C-E, Guérif P, Tellier M, Denancé C, et al. Pear breeding for scab and psylla resistance. Acta Hortic. 2008;800:475–82.
Article
Google Scholar
Musacchi S, Ancarani V, Gamberini A, Giatti B, Sansavini S. Progress in pear breeding at the University of Bologna. Acta Hortic. 2005;671:191–4.
Article
Google Scholar
White AG, Brewer LR. The New Zealand pear breeding project. Acta Hortic. 2002;596:239–42.
Article
Google Scholar
Bus VGM, Singla G, Ward S, Brewer L, Morgan C, Bowatte DR, et al. Progress in pipfruit resistance breeding and research at Plant & Food Research. Acta Hortic. 2017;1172:7–14.
Article
Google Scholar
Nishio S, Hayashi T, Yamamoto T, Yamada M, Takada N, Kato H, et al. Validation of molecular markers associated with fruit ripening day of Japanese pear (Pyrus pyrifolia Nakai) using variance components. Sci Hortic (Amsterdam). 2016;199:9–14.
Article
CAS
Google Scholar
Perchepied L, Leforestier D, Ravon E, Guérif P, Denancé C, Tellier M, et al. Genetic mapping and pyramiding of two new pear scab resistance QTLs. Mol Breed. 2015;35:197.
Article
Google Scholar
Elkins R, Bell R, Einhorn T. Needs assessment for future US pear rootstock research directions based on the current state of pear production and rootstock research. J Am Pomol Soc. 2012;66:153–63.
Google Scholar
Brewer LR, Palmer JW. Global pear breeding programmes: goals, trends and progress for new cultivars and new rootstocks. Acta Hortic. 2011;909:105–20.
Article
Google Scholar
Montanari S, Saeed M, Knäbel M, Kim Y, Troggio M, Malnoy M, et al. Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids. PLoS One. 2013;8:e77022.
Article
CAS
Google Scholar
Terakami S, Nishitani C, Kunihisa M, Shirasawa K, Sato S, Tabata S, et al. Transcriptome-based single nucleotide polymorphism markers for genome mapping in Japanese pear (Pyrus pyrifolia Nakai). Tree Genet Genomes. 2014;10:853–63.
Article
Google Scholar
Wu J, Li L-T, Li M, Khan MA, Li X-G, Chen H, et al. High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. J Exp Bot. 2014;65:5771–81.
Article
CAS
Google Scholar
Wang L, Li X, Wang L, Xue H, Wu J, Yin H, et al. Construction of a high-density genetic linkage map in pear (Pyrus communis × Pyrus pyrifolia nakai) using SSRs and SNPs developed by SLAF-seq. Sci Hortic (Amsterdam). Elsevier B.V. 2017;218:198–204.
Article
CAS
Google Scholar
Kumar S, Kirk C, Deng C, Wiedow C, Knaebel M, Brewer L. Genotyping-by-sequencing of pear (Pyrus spp.) accessions unravels novel patterns of genetic diversity and selection footprints. Hortic Res. 2017;4:17015.
Article
Google Scholar
Li L, Deng CH, Knäbel M, Chagné D, Kumar S, Sun J, et al. Integrated high-density consensus genetic map of Pyrus and anchoring of the ‘Bartlett’ v1.0 (Pyrus communis) genome. DNA Res. 2017;0:1–13.
Google Scholar
Montanari S, Guérif P, Ravon E, Denancé C, Muranty H, Velasco R, et al. Genetic mapping of Cacopsylla pyri resistance in an interspecific pear (Pyrus spp.) population. Tree Genet Genomes. 2015;11:74.
Article
Google Scholar
Knäbel M, Friend AP, Palmer JW, Diack R, Gardiner SE, Tustin S, et al. Quantitative trait loci controlling vegetative propagation traits mapped in European pear (Pyrus communis L.). Tree Genet Genomes. 2017;13:55.
Article
Google Scholar
Knäbel M, Friend AP, Palmer JW, Diack R, Wiedow C, Alspach P, et al. Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci. BMC Plant Biol. 2015;15:230.
Article
Google Scholar
Saeed M, Brewer L, Johnston J, McGhie TK, Gardiner SE, Heyes JA, et al. Genetic, metabolite and developmental determinism of fruit friction discolouration in pear. BMC Plant Biol. 2014;14:241.
Article
Google Scholar
Won K, Bastiaanse H, Kim YK, Song JH, Kang SS, Lee HC, et al. Genetic mapping of polygenic scab (Venturia pirina) resistance in an interspecific pear family. Mol Breed. 2014;34:2179–89.
Article
Google Scholar
Toosi A, Fernando RL, Dekkers JCM. Genomic selection in admixed and crossbred populations. J Anim Sci. 2010;88:32–46.
Article
CAS
Google Scholar
Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, et al. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell. 2009;21:2194–202.
Article
CAS
Google Scholar
Bassil N, Postman JD. Identification of European and Asian pears using EST-SSRs from Pyrus. Genet Resour Crop Evol. 2010;57:357–70.
Article
Google Scholar
Postman J, Kim D, Bassil N. OH x F paternity perplexes pear producers. J Am Pomol Soc. 2013;67:157–67.
Google Scholar
Evans KM, Fernández-Fernández F, Bassil N, Nyberg A, Postman J. Comparison of accessions from the UK and US National Pear Germplasm Collections with a standardized set of microsatellite markers. Acta Hortic. 2015;1094:41–6.
Article
Google Scholar
Volk GM, Richards CM, Henk AD, Rillery AA. Diversity of wild Pyrus communis based on microsatellite analyses. J Am Soc Hortic Sci. 2006;131:408–17.
Article
CAS
Google Scholar
Roorkiwal M, Jain A, Kale SM, Doddamani D, Chitikineni A, Thudi M, et al. Development and evaluation of high-density axiom™ CicerSNP Array for high-resolution genetic mapping and breeding applications in chickpea. Plant Biotechnol J. 2018;16:890–901.
Article
CAS
Google Scholar
Bianco L, Cestaro A, Linsmith G, Muranty H, Denance C, Théron A, et al. Development and validation of the axiom™ Apple480K SNP genotyping array. Plant J. 2016;86:62–74.
Article
CAS
Google Scholar
Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M, et al. A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics. 2014;15:823.
Article
Google Scholar
Faivre-Rampant P, Zaina G, Jorge V, Giacomello S, Segura V, Scalabrin S, et al. New resources for genetic studies in Populus nigra: genome wide SNP discovery and development of a 12k Infinium array. Mol Ecol Resour. 2016;16:1023–36.
Article
CAS
Google Scholar
Tayeh N, Aluome C, Falque M, Jacquin F, Klein A, Chauveau A, et al. Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high density, high resolution consensus genetic map. Plant J. 2015;84:1257–73.
Article
CAS
Google Scholar
Bianco L, Cestaro A, Sargent DJ, Banchi E, Derdak S, Di Guardo M, et al. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus x domestica Borkh). PLoS One. 2014;9:e110377.
Article
Google Scholar
Koning-Boucoiran CFS, Esselink GD, Vukosavljev M, van’t Westende WPC, Gitonga VW, Krens FA, et al. Using RNA-Seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68k Axiom™ SNP array for rose (Rosa L.). Front Plant Sci. 2015;6:249.
Article
Google Scholar
Bassil NV, Davis TM, Zhang H, Ficklin S, Mittmann M, Webster T, et al. Development and preliminary evaluation of a 90 K axiom™ SNP array for the Allo-octoploid cultivated strawberry Fragaria × ananassa. BMC Genomics. 2015;16:1–30.
Article
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin). 2012;6:80–92.
Article
CAS
Google Scholar
Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, et al. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS One. 2012;7:e31745.
Article
Google Scholar
Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, et al. The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS One. 2014;9:e92644.
Article
Google Scholar
Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, et al. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 2013;23:396–408.
Article
CAS
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.
Article
CAS
Google Scholar
Varshney RK, Graner A, Sorrells ME. Genic microsatellite markers in plants : features and applications. Trends Biotechnol. 2005;23.
Ingvarsson PK, Street NR. Association genetics of complex traits in plants. New Phytol. 2011;189:909–22.
Article
Google Scholar
Holderegger R, Kamm U, Gugerli F. Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol. 2006;21:797–807.
Article
Google Scholar
Challice JS, Westwood MN. Numerical taxonomic studies of the genus Pyrus using both chemical and botanical characters. Bot J Linn Soc. 1973;67:121–48.
Article
Google Scholar
Zheng X, Cai D, Potter D, Postman J, Liu J, Teng Y. Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences. Mol Phylogenet Evol. 2014;80:54–65.
Article
Google Scholar
Bell RL, Hough LF. Interspecific and intergenic hybridization of Pyrus. HortScience. 1986;21:62–4.
Google Scholar
Bell RL. Pears (Pyrus). Acta Hortic. 1991;290:657–700.
Article
Google Scholar
DeDonato M, Peters SO, Mitchell SE, Hussain T, Imumorin IG. Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing. PLoS One. 2013;8:e62137.
Article
CAS
Google Scholar
Albrechtsen A, Nielsen FC, Nielsen R. Ascertainment biases in SNP chips affect measures of population divergence. Mol Biol Evol. 2010;27:2534–47.
Article
CAS
Google Scholar
Ganal MW, Polley A, Graner EM, Plieske J, Wieseke R, Luerssen H, et al. Large SNP arrays for genotyping in crop plants. J Biosci. 2012;37:821–8.
Article
CAS
Google Scholar
Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson JD, Viola R, et al. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics. 2013;14:2.
Article
CAS
Google Scholar
Didion JP, Yang H, Sheppard K, Fu CP, McMillan L, De Villena FPM, et al. Discovery of novel variants in genotyping arrays improves genotype retention and reduces ascertainment bias. BMC Genomics. 2012;13:34.
Article
CAS
Google Scholar
Carlson CS, Smith JD, Stanaway IB, Rieder MJ, Nickerson DA. Direct detection of null alleles in SNP genotyping data. Hum Mol Genet. 2006;15:1931–7.
Article
CAS
Google Scholar
Ollitrault P, Terol J, Garcia-Lor A, Bérard A, Chauveau A, Froelicher Y, et al. SNP mining in C. clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping. BMC Genomics. 2012;13:13.
Article
CAS
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data [internet]. 2010. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
Article
Google Scholar
Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species. Plant Mol Biol Report. 1991;9:208–18.
Article
CAS
Google Scholar
Homer N, Merriman B, Nelson SF. BFAST: an alignment tool for large scale genome resequencing. PLoS One. 2009;4:e7767.
Article
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
Google Scholar
Bouvier L, Guérif P, Djulbic M, Durel CE, Chevreau E, Lespinasse Y. Chromosome doubling of pear haploid plants and homozygosity assessment using isozyme and microsatellite markers. Euphytica. 2002;123:255–62.
Article
CAS
Google Scholar
Schwender H, Li Q, Berger P, Neumann C, Taub M, Ruczinski I. trio: Testing of SNPs and SNP Interactions in Case-Parent Trio Studies [Internet]. 2015. Available from: https://rdrr.io/bioc/trio/
Google Scholar
Altschup SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
Google Scholar
BLAST® command line applications user manual [Internet]. Bethesda: National Center for Biotechnology Information (US); 2008. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279690/
Evans KM, Fernández-Fernández F, Govan C. Harmonising fingerprinting protocols to allow comparisons between germplasm collections - Pyrus. Acta Hortic. 2009;814:103–6.
Article
Google Scholar
Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–8.
Article
CAS
Google Scholar
VanOoijen JW. JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Wageningen: Kyazma B.V; 2006.
Google Scholar
Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics. 1994;137:1121–37.
CAS
PubMed
PubMed Central
Google Scholar