Lewis GD, Wei R, Liu E, Yang E, Shi X, Martinovic M, et al. Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J Clin Invest. 2008;118(10):3503–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blasco H, Nadal-Desbarats L, Pradat PF, Gordon PH, Madji Hounoum B, Patin F, et al. Biomarkers in amyotrophic lateral sclerosis: combining metabolomic and clinical parameters to define disease progression. Eur J Neurol. 2016;23(2):346–53.
Article
CAS
PubMed
Google Scholar
Yazdani A, Yazdani A, Samiei A, Boerwinkle E. A causal network analysis in an observational study identifies metabolomics pathways influencing plasma triglyceride levels. J Biomed Inform. 2016;63:337–43.
Article
PubMed
Google Scholar
Miller MJ, Kennedy AD, Eckhart AD, Burrage LC, Wulff JE, Miller LAD, et al. Untargeted metabolomic analysis for the clinical screening of inborn errors of metabolism. J Inherit Metab Dis. 2015;38(6):1029–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shayanfar S, Broumand A, Pillai SD. Acid stress induces differential accumulation of metabolites in Escherichia coli O26:H11. J Appl Microbiol. 2018.
Suhre K. Genetics meets metabolomics: from experiment to systems biology. Vol. 9781461416, Genetics Meets Metabolomics: From Experiment to Systems Biology. 2012. 1–318 p.
Shah SH, Newgard CB. Integrated metabolomics and genomics: systems approaches to biomarkers and mechanisms of cardiovascular disease. Circ Cardiovasc Genet. 2015;8(2):410–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46(6):543–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rhee EP, Ho JE, Chen M-H, Shen D, Cheng S, Larson MG, et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab. 2013;18(1):130–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kettunen J, Tukiainen T, Sarin A-P, Ortega-Alonso A, Tikkanen E, Lyytikäinen L-P, et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet. 2012;44(3):269–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yazdani A, Yazdani A, Liu X, Boerwinkle E. Identification of rare variants in metabolites of the carnitine pathway by whole genome sequencing analysis. Genet Epidemiol. 2016;40(6):486–91.
Article
PubMed
PubMed Central
Google Scholar
Yousri NA, Fakhro KA, Robay A, Rodriguez-Flores JL, Mohney RP, Zeriri H, et al. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a middle eastern population. Nat Commun. 2018;9(1).
Schaid DJ, Tong X, Larrabee B, Kennedy RB, Poland GA, Sinnwell JP. Statistical methods for testing genetic Pleiotropy. Genetics. 2016;204(2):483–97.
Article
PubMed
PubMed Central
Google Scholar
Yazdani A, Yazdani A, Giráldez RM, Aguilar DSL. A multi-trait approach identified genetic variants including a rare mutation in RGS3 with impact on abnormalities of cardiac structure/function. Nat-Sci Rep. 2019.
Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007;39(7):906–13.
Article
CAS
PubMed
Google Scholar
Broumand A, Esfahani MS, Yoon BJ, Dougherty ER. Discrete optimal Bayesian classification with error-conditioned sequential sampling. Pattern Recogn. 2015.
Broumand A, Dadaneh SZ. Sequential Sampling for Optimal Bayesian Classification of Sequencing Count Data. In: 52nd Asilomar Conf Signals. CA, USA: Syst Comput Pacific Grove; 2018. p. 1357–61.
Google Scholar
Yazdani H, Ortiz-Arroyo D, Choros K, Kwasnicka H. Applying bounded fuzzy possibilistic method on critical objects. In: CINTI 2016 - 17th IEEE international symposium on computational intelligence and informatics: proceedings. 2017.
Yazdani H. Bounded fuzzy Possibilistic method. arXive. 2019.
Yazdani A, Yazdani A, Boerwinkle EA. Causal network analysis of the fatty acid metabolome in African-Americans reveals a critical role for Palmitoleate and Margarate. Omi A J Integr Biol. 2016;20(8):480–4.
Article
CAS
Google Scholar
Yazdani A, Yazdani A, Samiei A, Boerwinkle E. Identification, analysis, and interpretation of a human serum metabolomics causal network in an observational study. J Biomed Inform. 2016;63:337–43.
Article
PubMed
Google Scholar
Investigators TARIC. The atherosclerosis risk in communities (ARIC) study: design and objectives. The ARIC investigators. Am J Epidemiol. 1989;129(4):687–702.
Article
Google Scholar
Liu X, Jian X, Boerwinkle E. dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat. 2013;34(9).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yazdani A, Yazdani A, Boerwinkle E. Rare variants analysis using penalization methods for whole genome sequence data. BMC Bioinformatics. 2015;16(1):405.
Article
PubMed
PubMed Central
Google Scholar
Yazdani A, Yazdani A, Samiei A, Boerwinkle E. Generating a robust statistical causal structure over 13 cardiovascular disease risk factors using genomics data. J Biomed Inform. 2016;60:114–9.
Article
PubMed
PubMed Central
Google Scholar
Yazdani et al. Arachidonic acid as a target for treating hypertriglyceridemia reproduced by a causal network analysis and an intervention study. Metabolomics. 2018.
Yazdani A, Yazdani A, Boerwinkle E. Conceptual aspects of causal networks in an applied context. J Data Mining Genomics Proteomics. 2016;07(02):2–4.
Article
Google Scholar
Patel KP, Luo FJG, Plummer NS, Hostetter TH, Meyer TW. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin J Am Soc Nephrol. 2012;7(6):982–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
van den Berg ME, Warren HR, Cabrera CP, Verweij N, Mifsud B, Haessler J, et al. Discovery of novel heart rate-associated loci using the exome Chip. Hum Mol Genet. 2017.
Wang S, Ma A, Song S, Quan Q, Zhao X, Zheng X. Fasting serum free fatty acid composition, waist/hip ratio and insulin activity in essential hypertensive patients. Hypertens Res. 2008;31(4):623–32.
Article
PubMed
Google Scholar
Miyajima T, Tsujino T, Saito K, Yokoyama M. Effects of eicosapentaenoic acid on blood pressure, cell membrane fatty acids, and intracellular sodium concentration in essential hypertension. Hypertens Res. 2001;24:537–42.
Article
CAS
PubMed
Google Scholar
Turak O, Afşar B, Ozcan F, Öksüz F, Mendi MA, Yayla Ç, et al. The role of plasma triglyceride/high-density lipoprotein cholesterol ratio to predict new cardiovascular events in essential hypertensive patients. J Clin Hypertens. 2016;18(8):772–7.
Article
CAS
Google Scholar
Karall D, Mair G, Albrecht U, Niedermayr K, Karall T, Schobersberger W, Scholl-Bürgi S. Sports in LCHAD deficiency: maximal incremental and endurance exercise tests in a 13-year-old patient with long-chain 3-Hydroxy acyl-CoA dehydrogenase deficiency (LCHADD) and Heptanoate treatment. In JIMD Reports. 2014;17:7–12.
Greco AV, Mingrone G, Capristo E, Benedetti G, De Gaetano A, Gasbarrini G. The metabolic effect of dodecanedioic acid infusion in non-insulin- dependent diabetic patients. Nutrition. 1998.
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009 Apr;9(4):311–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lotta LA, Scott RA, Sharp SJ, Burgess S, Luan J, Tillin T, et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a Mendelian randomisation analysis. PLoS Med. 2016;13(11).
Article
PubMed
PubMed Central
CAS
Google Scholar
Krug SM, Günzel D, Conrad MP, Rosenthal R, Fromm A, Amasheh S, et al. Claudin-17 forms tight junction channels with distinct anion selectivity. Cell Mol Life Sci. 2012 Aug;69(16):2765–78.
Article
CAS
PubMed
Google Scholar
Jørgensen KE, Kragh-Hansen U, Sheikh MI. Transport of leucine, isoleucine and valine by luminal membrane vesicles from rabbit proximal tubule. J Physiol. 1990 Mar;422:41–54.
Article
PubMed
PubMed Central
Google Scholar
Metrustry SJ, Karhunen V, Edwards MH, Menni C, Geisendorfer T, Huber A, et al. Metabolomic signatures of low birthweight: pathways to insulin resistance and oxidative stress. PLoS One. 2018;13(3):e019.
Article
CAS
Google Scholar
von Weymarn LB, Chun JA, Hollenberg PF. Effects of benzyl and phenethyl isothiocyanate on P450s 2A6 and 2A13: potential for chemoprevention in smokers. Carcinogenesis. 2006;27(4):782–90.
Article
CAS
Google Scholar
Yu B, Heiss G, Alexander D, Grams ME, Boerwinkle E. Associations between the serum metabolome and all-cause mortality among African Americans in the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol. 2016 Apr;183(7):650–6.
Article
PubMed
PubMed Central
Google Scholar
Wassenaar CA, Ye Y, Cai Q, Aldrich MC, Knight J, Spitz MR, et al. CYP2A6 reduced activity gene variants confer reduction in lung cancer risk in African American smokers--findings from two independent populations. Carcinogenesis. 2015 Jan;36(1):99–103.
Article
CAS
PubMed
Google Scholar
Park SL, Murphy SE, Wilkens LR, Stram DO, Hecht SS, Le Marchand L. Association of CYP2A6 activity with lung cancer incidence in smokers: the multiethnic cohort study. PLoS One. 2017;12(5):e0178435.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yuan J-M, Nelson HH, Carmella SG, Wang R, Kuriger-Laber J, Jin A, et al. CYP2A6 genetic polymorphisms and biomarkers of tobacco smoke constituents in relation to risk of lung cancer in the Singapore Chinese health study. Carcinogenesis. 2017 Apr;38(4):411–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weymarn V, B L, Chun JA, Hollenberg PF. Effects of benzyl and phenethyl isothiocyanate on P450s 2A6 and 2A13: potential for chemoprevention in smokers. Carcinogenesis. 2006 Apr;27(4):782–90.
Article
CAS
Google Scholar
Zhernakova A, Van Diemen CC, Wijmenga C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat Rev Genet. 2009;10:43–55.
Article
CAS
PubMed
Google Scholar
Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics. 2012;28(19):2540–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
van de Peppel J, Holstege FCP. Multifunctional genes. Mol Syst Biol. 2005;1(1):E1–2.
Google Scholar
Pleiotropy WGC. Natural selection, and the evolution of senescence. Evolution (N Y). 1957;11(4):398.
Google Scholar
Yazdani H, Choroś K. Comparative analysis of accuracy of fuzzy clustering methods applied for image processing. In: Advances in intelligent systems and computing. 2019.
Yazdani H, Ortiz-Arroyo D, Choroś K, Kwasnicka H. On high dimensional searching spaces and learning methods. In 2017.
Yazdani A, Yazdani A. Using statistical techniques and replication samples for missing value imputation with an application on metabolomics. J Biostat Epidemiol. 2018.
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;(16):38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics. 2010;26(5):589–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yazdani A, Boerwinkle E. Causal inference at the population level. Int J Res Med Sci. 2014;2(4):1368.
Article
Google Scholar
Sheehan NA, Didelez V, Burton PR, Tobin MD. Mendelian randomisation and causal inference in observational epidemiology. PLoS Med. 2008;5(8):1205–10.
Article
Google Scholar
Dawid AP. Fundamentals of statistical causality. RSS/EPSRC Grad Train Progr. 2007;(279):1–94.
Yazdani A, Yazdani A, Lorenzi PL, Samiei A. Integrated systems approach identifies pathways from the genome to triglycerides through a Metabolomic causal network. arXiv. 2018;(02):08.
Tsamardinos I, Brown LE, Aliferis CF. The max-min hill-climbing Bayesian network structure learning algorithm. Mach Learn. 2006;65(1):31–78.
Article
Google Scholar
Norouzi M, Fleet DJDDJ, Salakhutdinov R, Blei DM. Hamming distance metric learning. Adv Neural Inf Process Syst. 2012:1–9.
Schuster P, Fontana W, Stadler PF, Hofacker IL. From sequences to shapes and Back: a case study in RNA secondary structures. Proc R Soc B Biol Sci. 1994;255(1344):279–84.
Article
CAS
Google Scholar
Yazdani A, Dunson DB. A hybrid Bayesian approach for genome-wide association studies on related individuals. Bioinformatics. 2015;31(24):3890–6.
CAS
PubMed
Google Scholar
Darabos C, Harmon SH, Moore JH. Using the bipartite human phenotype network to reveal pleiotropy and epistasis beyond the gene. Pac Symp Biocomput. 2014;19:188–99.
Google Scholar
Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet. 2005;37(3):233–42.
Article
CAS
PubMed
Google Scholar
Stearns FW. One hundred years of pleiotropy: a retrospective. Genetics. 2010;186:767–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
He X, Zhang J. Toward a molecular understanding of pleiotropy. Genetics. 2006;173(4):1885–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubin DB. Causal inference using potential outcomes. J Am Stat Assoc. 2005.
Yazdani ABE. Causal inference in the age of decision medicine. J Data Mining Genomics Proteomics. 2015.
Pearl J. Causal inference in statistics: An overview. Stat Surv. 2009.