Weisburg WG, Tully JG, Rose DL, Petzel JP, Oyaizu H, Yang D, Mandelco L, Sechrest J, Lawrence TG, Van Etten J. A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol. 1989;171:6455–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weintraub PG, Beanland L. Insect vectors of phytoplasmas. Annu Rev Entomol. 2006;51:91–111.
Article
CAS
PubMed
Google Scholar
Hogenhout SA, Loria R. Virulence mechanisms of gram-positive plant pathogenic bacteria. Curr Opin Plant Biol. 2008;11:449–56.
Article
CAS
PubMed
Google Scholar
Oshima K, Maejima K, Namba S. Genomic and evolutionary aspects of phytoplasmas. Front Microbiol. 2013;4:230.
Article
PubMed
PubMed Central
Google Scholar
Christensen NM, Nicolaisen M, Hansen M, Schulz A. Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Mol Plant-Microbe Interact. 2004;17:1175–84.
Article
CAS
PubMed
Google Scholar
Oshima K, Kakizawa S, Nishigawa H, Jung HY, Wei W, Suzuki S, Arashida R, Nakata D, Miyata S, Ugaki M, et al. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet. 2004;36:27.
Article
CAS
PubMed
Google Scholar
Wei W, Davis RE, Jomantiene R, Zhao Y. Ancient, recurrent phage attacks and recombination shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution. Proc Natl Acad Sci. 2008;105:11827–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai X, Zhang J, Ewing A, Miller SA, Radek AJ, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW, et al. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol. 2006;188:3682–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM, Reinhardt R, Seemüller E. The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics. 2008;9:306.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tran-Nguyen LT, Kube M, Schneider B, Reinhardt R, Gibb KS. Comparative genome analysis of “Candidatus Phytoplasma australiense” (subgroup tuf-Australia I; rp-A) and “Ca Phytoplasma asteris” strains OY-M and AY-WB. J Bacteriol. 2008;190:3979–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersen MT, Liefting LW, Havukkala I, Beever RE. Comparison of the complete genome sequence of two closely related isolates of ‘Candidatus Phytoplasma australiense’ reveals genome plasticity. BMC Genomics. 2013;14:529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orlovskis Z, Canale MC, Haryono M, Lopes JRS, Kuo CH, Hogenhout SA. A few sequence polymorphisms among isolates of maize bushy stunt phytoplasma associate with organ proliferation symptoms of infected maize plants. Ann Bot. 2017;119:869–84.
CAS
PubMed
Google Scholar
Wang J, Song L, Jiao Q, Yang S, Gao R, Lu X, Zhou G. Comparative genome analysis of jujube witches’-broom Phytoplasma, an obligate pathogen that causes jujube witches’-broom disease. BMC Genomics. 2018;19:689.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E. Current view on phytoplasma genomes and encoded metabolism. Sci World J. 2012;2012:185942.
Article
CAS
Google Scholar
Bai X, Correa VR, Toruño TY, Ammar ED, Kamoun S, Hogenhout SA. AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol Plant-Microbe Interact. 2009;22:18–30.
Article
CAS
PubMed
Google Scholar
Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, Namba S. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci. 2009;106:6416–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pagliari L, Buoso S, Santi S, Furch AC, Martini M, Degola F, Loschi A, van Bel AJE, Musetti R. Filamentous sieve element proteins are able to limit phloem mass flow, but not phytoplasma spread. J Exp Bot. 2017;68:3673–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Musetti R, Di Toppi LS, Martini M, Ferrini F, Loschi A, Favali MA, Osler R. Hydrogen peroxide localization and antioxidant status in the recovery of apricot plants from European stone fruit yellows. Eur J Plant Pathol. 2005;112:53–61.
Article
CAS
Google Scholar
Santi S, De Marco F, Polizzotto R, Grisan S, Musetti R. Recovery from stolbur disease in grapevine involves changes in sugar transport and metabolism. Front Plant Sci. 2013;4:1–12.
Article
Google Scholar
Buxa SV, Degola F, Polizzotto R, De Marco F, Loschi A, Kogel KH, di Toppi LS, van Bel AJ, Musetti R. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements. Front Plant Sci. 2015;6:650.
Article
PubMed
PubMed Central
Google Scholar
De Marco F, Pagliari L, Degola F, Buxa SV, Loschi A, Dinant S, Le Hir R, Morin H, Santi S, Musetti R. Combined microscopy and molecular analyses show phloem occlusions and cell wall modifications in tomato leaves in response to ‘Candidatus Phytoplasma solani’. J Microsc. 2016;263:212–25.
Article
CAS
PubMed
Google Scholar
Pagliari L, Martini M, Loschi A, Musetti R. Looking inside phytoplasma-infected sieve elements: a combined microscopy approach using Arabidopsis thaliana as a model plant. Micron. 2016;89:87–97.
Article
CAS
PubMed
Google Scholar
Albertazzi G, Milc J, Caffagni A, Francia E, Roncaglia E, Ferrari F, Tagliafico E, Stefani E, Pecchioni N. Gene expression in grapevine cultivars in response to bois noir phytoplasma infection. Plant Sci. 2009;176:792–804.
Article
CAS
Google Scholar
Hren M, Nikolić P, Rotter A, Blejec A, Terrier N, Ravnikar M, Dermastia M, Gruden K. ‘Bois noir’ phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics. 2009;10:460.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu R, Dong Y, Fan G, Zhao Z, Deng M, Cao X, Niu S. Discovery of genes related to witches broom disease in Paulownia tomentosa× Paulownia fortunei by a de novo assembled transcriptome. PLoS One. 2013;8:e80238.
Article
PubMed
PubMed Central
Google Scholar
Mou HQ, Lu J, Zhu SF, Lin CL, Tian GZ, Xu X, Zhao WJ. Transcriptomic analysis of paulownia infected by paulownia witches'-broom phytoplasma. PLoS One. 2013;8:e77217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nejat N, Cahill DM, Vadamalai G, Ziemann M, Rookes J, Naderali N. Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Gen Genomics. 2015;290:1899–910.
Article
CAS
Google Scholar
Xue C, Liu Z, Dai L, Bu J, Liu M, Zhao Z, Jiang Z, Gao W, Zhao J. Changing host photosynthetic, carbohydrate, and energy metabolisms play important roles in Phytoplasma infection. Phytopathology. 2018;108:1067–77.
Article
CAS
PubMed
Google Scholar
Wang H, Ye X, Li J, Tan B, Chen P, Cheng J, Feng J. Transcriptome profiling analysis revealed co-regulation of multiple pathways in jujube during infection by ‘Candidatus Phytoplasma ziziphi’. Gene. 2018;665:82–95.
Article
CAS
PubMed
Google Scholar
Santi S, Grisan S, Pierasco A, De Marco F, Musetti R. Laser microdissection of grapevine leaf phloem infected by stolbur reveals site-specific gene responses associated to sucrose transport and metabolism. Plant Cell Environ. 2013;36:343–55.
Article
CAS
PubMed
Google Scholar
Paolacci AR, Catarcione G, Ederli L, Zadra C, Pasqualini S, Badiani M, Musetti R, Santi S, Ciaffi M. Jasmonate-mediated defence responses, unlike salicylate-mediated responses, are involved in the recovery of grapevine from bois noir disease. BMC Plant Biol. 2017;17:118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bertamini M, Grando MS, Nedunchezhian N. Effects of phytoplasma infection on pigments, chlorophyll-protein complex and photosynthetic activities in field grown apple leaves. Biol Plant. 2003;47:237–42.
Article
CAS
Google Scholar
Liu Z, Zhao J, Liu M. Photosynthetic responses to phytoplasma infection in Chinese jujube. Plant Physiol Biochem. 2016;105:12–20.
Article
PubMed
CAS
Google Scholar
Pracros P, Renaudin J, Eveillard S, Mouras A, Hernould M. Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Mol Plant Microbe Interact. 2006;19:62–8.
Article
CAS
PubMed
Google Scholar
Wei W, Davis RE, Nuss DL, Zhao Y. Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture. Proc Natl Acad Sci. 2013;110:19149–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Payne SM. Iron acquisition in microbial pathogenesis. Trends Microbiol. 1993;1:66–9.
Article
CAS
PubMed
Google Scholar
Naranjo-Arcos MA, Bauer P. Iron nutrition, oxidative stress, and pathogen defense. In: Erkekoglu P, Kocer-Gumusel B, editors. Nutritional Deficiency. Rijeka: InTechOpen; 2016. p. 63–98. https://doi.org/10.5772/63204.
Chapter
Google Scholar
Verbon EH, Trapet PL, Stringlis IA, Kruijs S, Bakker PA, Pieterse CM. Iron and immunity. Annu Rev Phytopathol. 2017;55:355–75.
Article
CAS
PubMed
Google Scholar
Schmidt W. Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol. 1999;141:1–26.
Article
CAS
Google Scholar
Römheld V, Marschner H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 1986;80:175–80.
Article
PubMed
PubMed Central
Google Scholar
Robinson NJ, Procter CM, Connolly EL, Guerinot ML. A ferric-chelate reductase for iron uptake from soils. Nature. 1999;397:694.
Article
CAS
PubMed
Google Scholar
Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci. 2002;99:13938–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eide D, Broderius M, Fett J, Guerinot ML. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci. 1996;93:5624–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eckhardt U, Marques AM, Buckhout TJ. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol. 2001;45:437–48.
Article
CAS
PubMed
Google Scholar
Santi S, Schmidt W. Dissecting iron deficiency–induced proton extrusion in Arabidopsis roots. New Phytol. 2009;183:1072–84.
Article
CAS
PubMed
Google Scholar
Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil. 2010;329:1–25.
Article
CAS
Google Scholar
Schmid NB, Giehl RF, Dol S, Mock HP, Strehmel N, Scheel D, Kong X, Hider RC, von Wirén N. Feruloyl-CoA 6′-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol. 2014;164:160–72.
Article
CAS
PubMed
Google Scholar
Sisó-Terraza P, Luis-Villarroya A, Fourcroy P, Briat JF, Abadía A, Gaymard F, Abadía J, Álvarez-Fernández A. Accumulation and secretion of coumarinolignans and other coumarins in Arabidopsis thaliana roots in response to iron deficiency at high pH. Front Plant Sci. 2016;7:1711.
Article
PubMed
PubMed Central
Google Scholar
Sisó-Terraza P, Rios JJ, Abadía J, Abadía A, Álvarez-Fernández A. Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms. New Phytol. 2016;209:733–45.
Article
PubMed
CAS
Google Scholar
Rajniak J, Giehl RF, Chang E, Murgia I, von Wirén N, Sattely ES. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat Chem Biol. 2018;14:442.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai HH, Rodríguez-Celma J, Ping L, Wu YC, Vélez-Bermúdez IC, Schmidt W. Scopoletin 8-hydroxylase-mediated Fraxetin production is crucial for Iron mobilization. Plant Physiol. 2018;177:194–207.
CAS
PubMed
PubMed Central
Google Scholar
Tsai HH, Schmidt W. Mobilization of iron by plant-borne coumarins. Trends Plant Sci. 2017;22:538–48.
Article
CAS
PubMed
Google Scholar
Colangelo EP, Guerinot ML. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell. 2004;16:3400–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brumbarova T, Bauer P. Iron-mediated control of the basic helix-loop-helix protein FER, a regulator of iron uptake in tomato. Plant Physiol. 2005;137:1018–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan YX, Zhang J, Wang DW, Ling HQ. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res. 2005;15:613.
Article
CAS
PubMed
Google Scholar
Bauer P, Ling HQ, Guerinot ML. FIT, the FER-like iron deficiency induced transcription factor in Arabidopsis. Plant Physiol Biochem. 2007;45:260–1.
Article
CAS
PubMed
Google Scholar
Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D, Ling HQ. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res. 2008;18:385.
Article
CAS
PubMed
Google Scholar
Sivitz AB, Hermand V, Curie C, Vert G. Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway. PLoS One. 2012;7:e44843.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang N, Cui Y, Liu Y, Fan H, Du J, Huang Z, Yuan Y, Wu H, Ling HQ. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Mol Plant. 2013;6:503–13.
Article
CAS
PubMed
Google Scholar
Du J, Huang Z, Wang B, Sun H, Chen C, Ling HQ, Wu H. SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato. Ann Bot. 2015;116:23–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jakoby M, Wang HY, Reidt W, Weisshaar B, Bauer P. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett. 2004;577:528–34.
Article
CAS
PubMed
Google Scholar
Ivanov R, Brumbarova T, Bauer P. Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Mol Plant. 2012;5:27–42.
Article
CAS
PubMed
Google Scholar
Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell. 2010;22:2219–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA. Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. Plant Physiol. 2015;167:273–86.
Article
CAS
PubMed
Google Scholar
Grillet L, Lan P, Li W, Mokkapati G, Schmidt W. IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nat Plants. 2018;4:95.
Article
CAS
Google Scholar
Zamioudis C, Hanson J, Pieterse CM. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. New Phytol. 2014;204:368–79.
Article
CAS
PubMed
Google Scholar
Valenta V, Musil M, Mišiga S. Investigations on European yellows-type viruses I the stolbur virus. J Phytopathol. 1961;42:1–38.
Article
Google Scholar
Garnier M. The stolbur phytoplasma: an ubiquitous agent. Comptes Rendus de l Academie d Agriculture de France. 2000;86:27–33.
Google Scholar
Gatineau F, Jacob N, Vautrin S, Larrue J, Lherminier J, Richard-Molard M, Boudon-Padieu E. Association with the syndrome “basses richesses” of sugar beet of a phytoplasma and a bacterium-like organism transmitted by a Pentastiridius sp. Phytopathology. 2002;92:384–92.
Article
CAS
PubMed
Google Scholar
Duduk B, Bertaccini A. Corn with symptoms of reddening: new host of stolbur phytoplasma. Plant Dis. 2006;90:1313–9.
Article
CAS
PubMed
Google Scholar
Jović J, Cvrković T, Mitrović M, Krnjajić S, Redinbaugh MG, Pratt RC, Gingery RE, Hogenhout SA, Toševski I. Roles of stolbur phytoplasma and Reptalus panzeri (Cixiinae, Auchenorrhyncha) in the epidemiology of maize redness in Serbia. Eur J Plant Pathol. 2007;118:85–9.
Article
Google Scholar
Gao Y, Qiu PP, Liu WH, Su WM, Gai SP, Liang YC, Zhu XP. Identification of ‘Candidatus Phytoplasma solani’ associated with tree Peony yellows disease in China. J Phytopathol. 2013;161:197–200.
Article
CAS
Google Scholar
Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G. The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol. 2008;146:589–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendoza-Cózatl DG, Xie Q, Akmakjian GZ, Jobe TO, Patel A, Stacey MG, Song L, Demoin DW, Jurisson SS, Stacey G, et al. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Mol Plant. 2014;7:1455–69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhai Z, Gayomba SR, Jung H, Vimalakumari NK, Piñeros M, Craft E, Rutzke MA, Danku J, Lahner B, Punshon T, Guerinot ML, Salt DE, Kochian LV. Vatamaniuk OK OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. Plant Cell. 2014;26(5):2249–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodríguez-Celma J, Pan I, Li WD, Lan PD, Buckhout TJ, Schmidt W. The transcriptional response of Arabidopsis leaves to Fe deficiency. Front Plant Sci. 2013;4:276.
Article
PubMed
PubMed Central
Google Scholar
Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell. 2002;110:361–71.
Article
CAS
PubMed
Google Scholar
Li L, Cheng X, Ling HQ. Isolation and characterization of Fe (III)-chelate reductase gene LeFRO1 in tomato. Plant Mol Biol. 2004;54:125–36.
Article
PubMed
Google Scholar
Morsomme P, Boutry M. The plant plasma membrane H+-ATPase: structure, function and regulation. Biochim Biophys Acta Biomembr. 2000;1465:1–16.
Article
CAS
Google Scholar
Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem. 2003;278:24697–704.
Article
CAS
PubMed
Google Scholar
Siwinska J, Siatkowska K, Olry A, Grosjean J, Hehn A, Bourgaud F, Meharg AA, Carey M, Lojkowska E, Ihnatowicz A. Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. J Exp Bot. 2018;69:1735–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segarra G, Van der Ent S, Trillas I, Pieterse CMJ. MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol. 2009;11:90–6.
Article
CAS
PubMed
Google Scholar
López-Millán AF, Morales F, Gogorcena Y, Abadía A, Abadía J. Metabolic responses in iron deficient tomato plants. J Plant Physiol. 2009;166:375–84.
Article
PubMed
CAS
Google Scholar
Stocking CR. Iron deficiency and the structure and physiology of maize chloroplasts. Plant Physiol. 1975;55:626–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Briat JF, Fobis-Loisy I, Grignon N, Lobréaux S, Pascal N, Savino G, Thoiron S, von Wirén N, Van Wuytswinkel O. Cellular and molecular aspects of iron metabolism in plants. Biol Cell. 1995;84:69–81.
Article
CAS
Google Scholar
Vigani G, Faoro F, Ferretti AM, Cantele F, Maffi D, Marelli M, Maver M, Murgia I, Zocchi G. Three-dimensional reconstruction, by TEM tomography, of the ultrastructural modifications occurring in Cucumis sativus L mitochondria under Fe deficiency. PLoS One. 2015;10:e0129141.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang YX, Hu Y, Zhu YF, Baloch AW, Jia XM, Guo AX. Transcriptional and physiological analyses of short-term Iron deficiency response in apple seedlings provide insight into the regulation involved in photosynthesis. BMC Genomics. 2018;19:461.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartoli CG, Casalongue C, Simontacchi M, Marquez-Garcia B, Foyer CH. Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot. 2013;94:73–88.
Article
CAS
Google Scholar
De Torres ZM, Littlejohn G, Jayaraman S, Studholme D, Bailey T, Lawson T, Tillich M, Licht D, Bolter B, Delfino L, et al. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nat Plants. 2015;1:15074.
Article
CAS
Google Scholar
Aznar A, Chen NW, Thomine S, Dellagi A. Immunity to plant pathogens and iron homeostasis. Plant Sci. 2015;240:90–7.
Article
CAS
PubMed
Google Scholar
Kobayashi T, Nishizawa NK. Iron sensors and signals in response to iron deficiency. Plant Sci. 2014;224:36–43.
Article
CAS
PubMed
Google Scholar
Musetti R, Buxa SV, De Marco F, Loschi A, Polizzotto R, Kogel KH, van Bel AJ. Phytoplasma-triggered Ca2+ influx is involved in sieve-tube blockage. Mol Plant-Microbe Interact. 2013;26:379–86.
Article
CAS
PubMed
Google Scholar
Romera FJ, Alcántara E, De La Guardia MD. Role of roots and shoots in the regulation of the Fe efficiency responses in sunflower and cucumber. Physiol Plant. 1992;85:141–6.
Article
CAS
Google Scholar
Schmidt W, Boomgaarden B, Ahrens V. Reduction of root iron in Plantago lanceolata during recovery from Fe deficiency. Physiol Plant. 1996;98:587–93.
Article
CAS
Google Scholar
Schikora A, Schmidt W. Iron stress-induced changes in root epidermal cell fate are regulated independently from physiological responses to low iron availability. Plant Physiol. 2001;125:1679–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vert GA, Briat JF, Curie C. Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol. 2003;132:796–804.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quaglino F, Zhao Y, Casati P, Bulgari D, Bianco PA, Wei W, Davis RE. ‘Candidatus Phytoplasma solani’, a novel taxon associated with stolbur-and bois noir-related diseases of plants. Int J Syst Evol Microbiol. 2013;63:2879–94.
Article
CAS
PubMed
Google Scholar
Doyle JJ, Doyle JL. DNA extraction from Arabidopsis. Focus. 1990;12:13–5.
Google Scholar
Martini M, Musetti R, Grisan S, Polizzotto R, Borselli S, Pavan F, Osler R. DNA-dependent detection of the grapevine fungal endophytes Aureobasidium pullulans and Epicoccum nigrum. Plant Dis. 2009;93:993–8.
Article
CAS
PubMed
Google Scholar
Ling HQ, Koch G, Bäumlein H, Ganal MW. Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci. 1999;96:7098–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013;31:46.
Article
CAS
PubMed
Google Scholar
Nicol JW, Helt GA, Blanchard SG Jr, Raja A, Loraine AE. The integrated genome browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics. 2009;25:2730–1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai H, Chen H, Yi T, Daimon CM, Boyle JP, Peers C, Maudsley S, Martin B. VennPlex–a novel Venn diagram program for comparing and visualizing datasets with differentially regulated datapoints. PLoS One. 2013;8:e53388.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010;38:D355–60.
Article
CAS
PubMed
Google Scholar
Bienfait HF, van den Briel W, Mesland-Mul NT. Free space iron pools in roots: generation and mobilization. Plant Physiol. 1985;78:596–600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roschzttardtz H, Conéjéro G, Curie C, Mari S. Identification of the endodermal vacuole as the iron storage compartment in the Arabidopsis embryo. Plant Physiol. 2009;151:1329–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034–1.
Article
PubMed
PubMed Central
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muller PY, Janovjak H, Miserez AR, Dobbie Z. Short technical report processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques. 2002;32:1372–9.
CAS
PubMed
Google Scholar
Welch RM, Norvell WA, Schaefer SC, Shaff JE, Kochian LV. Induction of iron (III) and copper (II) reduction in pea (Pisum sativum L) roots by Fe and cu status: does the root-cell plasmalemma Fe (III)-chelate reductase perform a general role in regulating cation uptake? Planta. 1993;190:555–61.
Article
CAS
Google Scholar