Clarke A, Phillips DI. Clinical aspects of X-linked hypohidrotic ectodermal dysplasia. Arch Dis Child. 1987;62(10):989. https://doi.org/10.1136/adc.62.10.989.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lefebvre S, Mikkola M. Ectodysplasin research—where to next? Semin Immunol. 2014;26:220–8.
Article
CAS
Google Scholar
Kuramoto T, Yokoe M, Hashimoto R, Hiai H, Serikawa T. A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene. BMC Genet. 2011;12:1–8.
Article
Google Scholar
Waluk D, Zur G, Kaufmann R, Welle M, Jagannathan V, Drögemüller C, et al. A splice defect in the EDA gene in dogs with an X-linked Hypohidrotic ectodermal dysplasia (XLHED) phenotype. G3: Genes|Genomes|Genetics. 2016;6:2949–54.
Article
CAS
Google Scholar
Drögemüller C, Kuiper H, Peters M, Guionaud S, Distl O, Leeb T. Congenital hypotrichosis with anodontia in cattle: a genetic, clinical and histological analysis. Vet Dermatol. 2002;13:307–13.
Article
Google Scholar
Seeliger F, Drögemüller C, Tegtmeier P, Baumgärtner W, Distl O, Leeb T. Ectodysplasin-1 deficiency in a German Holstein bull associated with loss of respiratory mucous glands and chronic Rhinotracheitis. J Comp Pathol. 2005;132:346–9.
Article
CAS
Google Scholar
Zankl A, Addor M-C, Cousin P, Gaide A-C, Gudinchet F, Schorderet D. Fatal outcome in a female monozygotic twin with X-linked hypohydrotic ectodermal dysplasia (XLHED) due to a de novo t (X;9) translocation with probable disruption of the EDA gene. Eur J Pediatr. 2001;160:296–9.
Article
CAS
Google Scholar
Cluzeau C, Hadj-Rabia S, Jambou M, Mansour S, Guigue P, Masmoudi S, et al. Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases. Hum Mutat. 2011;32:70–2.
Article
CAS
Google Scholar
Tziotzios C, Petrof G, Liu L, Verma A, Wedgeworth EK, Mellerio JE, et al. Clinical features and WNT10A mutations in seven unrelated cases of Schöpf–Schulz–Passarge syndrome. Br J Dermatol. 2014;171:1211–4.
Article
CAS
Google Scholar
Gordon M, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006;281:22429–33.
Article
CAS
Google Scholar
Zeng B, Xiao X, Li S, Lu H, Lu J, Zhu L, et al. Eight mutations of three genes (EDA, EDAR, and WNT10A) identified in seven Hypohidrotic ectodermal dysplasia patients. Genes. 2016;7:65.
Article
Google Scholar
Wiśniewski SAA, Kobielak A, Trzeciak WHH, Kobielak K. Recent advances in understanding of the molecular basis of anhidrotic ectodermal dysplasia: discovery of a ligand, ectodysplasin a and its two receptors. J Appl Genet. 2002;43:97–107.
PubMed
Google Scholar
Cui C, Schlessinger D. EDA signaling and skin appendage development. Cell Cycle. 2006;5(21):2477.
Article
CAS
Google Scholar
Karlskov-Mortensen P, Cirera S, Nielsen OL, Arnbjerg J, Reibel J, Fredholm M, et al. Exonization of a LINE1 fragment implicated in X-linked hypohidrotic ectodermal dysplasia in cattle. Anim Genet. 2011;42:578–84.
Article
CAS
Google Scholar
Cambiaghi S, Restano L, Pääkkönen K, Caputo R, Kere J. Clinical findings in mosaic carriers of hypohidrotic ectodermal dysplasia. Arch Dermatol. 2000;136:217–24.
Article
CAS
Google Scholar
Barlund CS, Clark EG, Leeb T, Drögemüller C, Palmer CW. Congenital hypotrichosis and partial anodontia in a crossbred beef calf. Can Vet J. 2007;48:612–4.
PubMed
PubMed Central
Google Scholar
Ogino A, Kohama N, Ishikawa S, Tomita K, Nonaka S, Shimizu K, et al. A novel mutation of the bovine EDA gene associated with anhidrotic ectodermal dysplasia in Holstein cattle. Hereditas. 2011;148:46–9.
Article
Google Scholar
Daetwyler H, Capitan A, Pausch H, Stothard P, van BR, Brøndum R, et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat Genet. 2014;46:ng.3034.
Article
Google Scholar
Bouwman A, Daetwyler H, Chamberlain A, Ponce C, Sargolzaei M, Schenkel F, et al. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat Genet. 2018;50:362–7.
Article
CAS
Google Scholar
Michot P, Fantini O, Braque R, Allais-Bonnet A, Saintilan R, Grohs C, et al. Whole-genome sequencing identifies a homozygous deletion encompassing exons 17 to 23 of the integrin beta 4 gene in a Charolais calf with junctional epidermolysis bullosa. Genet Sel Evol. 2015;47:1–7.
Article
CAS
Google Scholar
Robinson J, Thorvaldsdóttir H, Winckler W, Guttman M, Lander E, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24.
Article
CAS
Google Scholar
Hastings IG, Lupski J. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 2009;5:e1000327.
Article
CAS
Google Scholar
Sonnhammer E, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167:GC1–GC10.
Article
CAS
Google Scholar
Bourneuf E, Otz P, Pausch H, Jagannathan V, Michot P, Grohs C, et al. Rapid discovery of De novo deleterious mutations in cattle enhances the value of livestock as model species. Sci Rep. 2017;7:11466.
Article
CAS
Google Scholar
Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, et al. Type IIc sodium–dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol. 2009;20:104–13.
Article
CAS
Google Scholar
Myakala K, Motta S, Murer H, Wagner C, Koesters R, Biber J, et al. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice. Am J Physiol-renal. 2014;306:F833–43.
Article
CAS
Google Scholar
Zohn I, Li Y, Skolnik E, Anderson K, Han J, Niswander L. p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation. Cell. 2006;125:957–69.
Article
CAS
Google Scholar
Harada K, Truong AB, Cai T, Khavari PA. The class II phosphoinositide 3-kinase C2β is not essential for epidermal differentiation. Mol Cell Biol. 2005;25(24):11122. https://doi.org/10.1128/MCB.25.24.11122-11130.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barakat T, Jonkers I, Monkhorst K, Gribnau J. X-changing information on X inactivation. Exp Cell Res. 2010;316:679–87.
Article
CAS
Google Scholar
Senner C, Brockdorff N. Xist gene regulation at the onset of X inactivation. Curr Opin Genet Dev. 2009;19:122–6.
Article
CAS
Google Scholar
Renault N, Dyack S, Dobson M, Costa T, Lam W, Greer W. Heritable skewed X-chromosome inactivation leads to haemophilia a expression in heterozygous females. Eur J Hum Genet. 2007;15:5201799.
Article
Google Scholar
Belmont JW. Genetic control of X inactivation and processes leading to X-inactivation skewing. Am J Hum Genet. 1996;58:1101–8.
CAS
PubMed
PubMed Central
Google Scholar
Clerc P, Avner P. Role of the region 3′ to Xist exon 6 in the counting process of X-chromosome inactivation. Nat Genet. 1998;19:ng0798_249.
Article
Google Scholar
Plenge RM, Hendrich BD, Schwartz C, Arena JF, Naumova A, Sapienza C, et al. A promoter mutation in the XIST gene in two unrelated families with skewed X-chromosome inactivation. Nat Genet. 1997;17:353–6.
Article
CAS
Google Scholar
Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 1997;11(2):156. https://doi.org/10.1101/gad.11.2.156.
Article
CAS
PubMed
Google Scholar
Lee HJ, Gopalappa R, Sunwoo H, Choi S-WW, Ramakrishna S, Lee JT, et al. En bloc and segmental deletions of human XIST reveal X chromosome inactivation-involving RNA elements. Nucleic Acids Res. 2019;47(8):3875.
PubMed
PubMed Central
Google Scholar
Yen Z, Meyer I, Karalic S, Brown C. A cross-species comparison of X-chromosome inactivation in Eutheria. Genomics. 2007;90:453–63.
Article
CAS
Google Scholar
Chureau C, Prissette M, Bourdet A, Barbe V, Cattolico L, Jones L, et al. Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine. Genome Res. 2002;12:894–908.
CAS
PubMed
PubMed Central
Google Scholar
Kere J, Grzeschik KH, Limon J, Genomics G-M. Anhidrotic ectodermal dysplasia gene region cloned in yeast artificial chromosomes. Genomics. 1993;16(2):305 https://www.sciencedirect.com/science/article/pii/S0888754383711894.
Article
CAS
Google Scholar
MacDermot KD, genetics H-M. Female with hypohidrotic ectodermal dysplasia and de novo (X; 9) translocation. Hum Genet. 1990;84(6):577 https://link.springer.com/article/10.1007/BF00210814.
Article
CAS
Google Scholar
Gale RE, Wheadon H, Boulos P, Blood L-D. Tissue specificity of X-chromosome inactivation patterns. Blood. 1994;83(10):2899 http://www.bloodjournal.org/content/83/10/2899.short.
CAS
PubMed
Google Scholar
Naumova AK, Plenge RM, Bird LM, Leppert M, Morga K, Willard HF, Sapienza C. Heritability of X chromosome--inactivation phenotype in a large family. Am J Hum Genet. 1996;58(6):1111 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1915075/.
CAS
PubMed
PubMed Central
Google Scholar
Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet. 1992;51(6):1229 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1682906/.
CAS
PubMed
PubMed Central
Google Scholar
Pereira L, Zatz M. Screening of the C43G mutation in the promoter region of the XIST gene in females with highly skewed X-chromosome inactivation. Am J Med Genet. 1999;87:86–7.
Article
CAS
Google Scholar
Pääkkönen K, Cambiaghi S, Novelli G, Ouzts L, Penttinen M, Kere J, et al. The mutation spectrum of the EDA gene in X-linked anhidrotic ectodermal dysplasia. Hum Mutat. 2001;17:349.
Article
Google Scholar
Puig M, Castellano D, Pantano L, Giner-Delgado C, Izquierdo D, Gayà-Vidal M, et al. Functional impact and evolution of a novel human polymorphic inversion that disrupts a gene and Creates a fusion transcript. PLoS Genet. 2015;11:e1005495.
Article
Google Scholar
Boichard D. PEDIG: a fortran package for pedigree analysis suited for large populations. 7th world congress on genetics applied to livestock production; 2002. p. 28–13.
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
Google Scholar
McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP effect predictor. Bioinformatics. 2010;26:2069–70.
Article
CAS
Google Scholar
Kumar P, Henikoff S, Ng P. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:nprot.2009.86.
Article
Google Scholar
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115.
Article
CAS
Google Scholar
Kent W. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12:656–64.
Article
CAS
Google Scholar