Stępień Ł, Chełkowski J. Fusarium head blight of wheat: pathogenic species and their mycotoxins. World Mycotoxin J. 2010;3:107–19. https://doi.org/10.3920/WMJ2009.1193.
Article
CAS
Google Scholar
Bakker MG, Brown DW, Kelly AC, Kim H, Kurtzman CP, Mccormick SP, et al. Fusarium mycotoxins: a trans-disciplinary overview. Can J Plant Pathol. 2018;40:161–71.
Article
CAS
Google Scholar
Buerstmayr H, Ban T, Anderson JAA. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat : a review. Plant Breed. 2009;128:1–26.
Article
CAS
Google Scholar
Walter S, Nicholson P, Doohan FM. Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol. 2010;185:54–66.
Article
CAS
PubMed
Google Scholar
Ribichich KF, Lopez SE, Vegetti AC. Histopathological spikelet changes produced by Fusarium graminearum in susceptible and resistant wheat cultivars. Plant Dis. 2000;84:794–802. https://doi.org/10.1094/PDIS.2000.84.7.794.
Article
PubMed
Google Scholar
Lahlali R, Kumar S, Wang L, Forseille L, Sylvain N, Korbas M, et al. Cell wall biomolecular composition plays a potential role in the host type II resistance to Fusarium head blight in wheat. Front Microbiol. 2016;7:910. https://doi.org/10.3389/fmicb.2016.00910.
Article
PubMed
PubMed Central
Google Scholar
Oliver RE, Cai X, Friesen TL, Halley S, Stack RW, Xu SS. Evaluation of Fusarium head blight resistance in tetraploid wheat (Triticum turgidum L.). Crop Sci. 2008;48:213–22. https://doi.org/10.2135/cropsci2007.03.0129.
Article
Google Scholar
Oliver REE, Stack RWW, Miller JD, Cai X. Reaction of wild emmer wheat accessions to Fusarium head blight. Crop Sci. 2007;47:893–9.
Article
Google Scholar
Ruan Y, Comeau A, Langevin F, Hucl P, Clarke J, Brule-Babel A, et al. Identification of novel QTL for resistance to Fusarium head blight in a tetraploid wheat population. Genome. 2012;55:853–64. https://doi.org/10.1139/gen-2012-0110.
Article
CAS
PubMed
Google Scholar
Somers DJ, Fedak G, Clarke J, Cao W. Mapping of FHB resistance QTLs in tetraploid wheat. Genome. 2006;49:1586–93.
Article
CAS
PubMed
Google Scholar
Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK, Ando K, et al. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet. 2016;48:1576–80.
Article
CAS
PubMed
Google Scholar
Su Z, Bernardo A, Bai G. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nature Genet. 2019;51:1099–105.
Article
CAS
PubMed
Google Scholar
Lemmens M, Scholz U, Berthiller F, Dall ‘asta C, Koutnik A, Schuhmacher R, et al. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant-Microbe Interact. 2005;18:1318–24.
Article
CAS
PubMed
Google Scholar
Schweiger W, Steiner B, Vautrin S, Nussbaumer T, Siegwart G, Zamini M, et al. Suppressed recombination and unique candidate genes in the divergent haplotype encoding Fhb1, a major Fusarium head blight resistance locus in wheat. Theor Appl Genet. 2016;129:1607–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Z-W, Xu D-A, Gao C-B, Xia X-C, Hao Y-F, He Z-H. Characterization of Fusarium head blight resistance gene Fhb1 and its putative ancestor in chinese wheat germplasm. Acta Agron Sin. 2018;44:473–82 http://zwxb.chinacrops.org.
Article
Google Scholar
Schweiger W, Steiner B, Ametz C, Siegwart G, Wiesenberger G, Berthiller F, et al. Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs.Ifa-5A, identifies novel candidate genes. Mol Plant Pathol. 2013;14:772–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhokane D, Karre S, Kushalappa AC, McCartney C. Integrated metabolo-transcriptomics reveals Fusarium head blight candidate resistance genes in wheat QTL-Fhb2. PLoS One. 2016;11:1–27.
Article
CAS
Google Scholar
Long X, Balcerzak M, Gulden S, Cao W, Fedak G, Wei YM, et al. Expression profiling identifies differentially expressed genes associated with the Fusarium head blight resistance QTL 2DL from the wheat variety Wuhan-1. Physiol Mol Plant Pathol. 2015;90:1–11.
Article
CAS
Google Scholar
Sari E, Berraies S, Knox RE, Singh AK, Ruan Y, Cuthbert RD, et al. High density genetic mapping of Fusarium head blight resistance QTL in tetraploid wheat. PlosOne. 2018;13:e0204362.
Article
CAS
Google Scholar
Boddu J, Cho S, Kruger WM, Muehlbauer GJ. Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant-Microbe Interact. 2006;19:407–17. https://doi.org/10.1094/MPMI-19-0407.
Article
CAS
PubMed
Google Scholar
Boedi S, Berger H, Sieber C, Münsterkötter M, Maloku I, Warth B, et al. Comparison of Fusarium graminearum transcriptomes on living or dead wheat differentiates substrate-responsive and defense-responsive genes. Front Microbiol. 2016;7:1–24.
Article
Google Scholar
Wang L, Li Q, Liu Z, Surendra A, Pan Y, Li Y, et al. Integrated transcriptome and hormone profiling highlight the role of multiple phytohormone pathways in wheat resistance against Fusarium head blight. PLoS One. 2018;13:e0207036. https://doi.org/10.1371/journal.pone.0207036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller SS, Chabot DMP, Ouellet T, Harris LJ, Fedak G. Use of a Fusarium graminearum strain transformed with green fluorescent protein to study infection in wheat (Triticum aestivum). Can J Plant Pathol. 2004;26:453–63. https://doi.org/10.1080/07060660409507165.
Article
CAS
Google Scholar
Kazan K, Gardiner DM. Transcriptomics of cereal-Fusarium graminearum interactions: What we have learned so far. Mol Plant Pathol. 2017;19:764–78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361:eaar7191.
Article
CAS
Google Scholar
Bernardo A, Bai G, Guo P, Xiao K, Guenzi AC, Ayoubi P. Fusarium graminearum-induced changes in gene expression between Fusarium head blight-resistant and susceptible wheat cultivars. Funct Integr Genomics. 2007;7:69–77.
Article
CAS
PubMed
Google Scholar
Gottwald S, Samans B, Lück S, Friedt W. Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat? BMC Genomics. 2012;13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao J, Jin X, Jia X, Wang H, Cao A, Zhao W, et al. Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics. 2013;14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li G, Yen Y. Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Sci. 2008;48:1888–96.
Article
Google Scholar
Ding L, Xu H, Yi H, Yang L, Kong Z, Zhang L, et al. Resistance to hemi-biotrophic F graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One. 2011;6:e19008. https://doi.org/10.1371/journal.pone.0019008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ravensdale M, Rocheleau H, Wang L, Nasmith C, Ouellet T, Subramaniam R. Components of priming-induced resistance to Fusarium head blight in wheat revealed by two distinct mutants of Fusarium graminearum. Mol Plant Pathol. 2014;15:948–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buerstmayr M, Lemmens M, Steiner B, Buerstmayr H. Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha × T. aestivum population. Theor Appl Genet. 2011;123:293–306. https://doi.org/10.1007/s00122-011-1584-x.
Article
PubMed
PubMed Central
Google Scholar
Buerstmayr M, Huber K, Heckmann J, Steiner B, Nelson JC, Buerstmayr H. Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum × Triticum durum. Theor Appl Genet. 2012;125:1751–65.
Article
PubMed
PubMed Central
Google Scholar
Nicholson P, Steed A, Goddard R, Burt C, Chen X, Gosman N, et al. The role of phytohormoes in resistance to Fusarium head blight and implications for breeding. In: Proceeding of 5th International Fusarium Head Blight Symposium. Florianopolis; 2016.
Buhrow LM, Cram D, Tulpan D, Foroud NA, Loewen MC. Exogenous abscisic acid and gibberellic acid elicit opposing effects on Fusarium graminearum infection in wheat. Phytopathology. 2016;106:986.
Article
CAS
PubMed
Google Scholar
Kazan K, Lyons R. Intervention of phytohormone pathways by pathogen effectors. Plant Cell. 2014;26:2285–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caruso C, Caporale C, Chilosi G, Vacca F, Bertini L, Magro P, et al. Structural and antifungal properties of a pathogenesis-related protein from wheat kernel. J Protein Chem. 1996;15:35–44. https://doi.org/10.1007/BF01886809.
Article
CAS
PubMed
Google Scholar
Caruso C, Chilosi G, Caporale C, Leonardi L, Bertini L, Magro P, et al. Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Sci. 1999;140:87–97. https://doi.org/10.1016/S0168-9452(98)00199-X.
Article
CAS
Google Scholar
Pritsch C, Muehlbauer GJ, Bushnell WR, Somers DA, Vance CP. Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Mol Plant-Microbe Interact. 2000;13:159–69. https://doi.org/10.1094/MPMI.2000.13.2.159.
Article
CAS
PubMed
Google Scholar
Li WL, Faris JD, Muthukrishnan S, Liu DJ, Chen PD, Gill BS. Isolation and characterization of novel cDNA clones of acidic chitinases and β-1,3-glucanases from wheat spikes infected by Fusarium graminearum. Theor Appl Genet. 2001;102:353–62.
Article
CAS
Google Scholar
Lay F, Anderson M. Defensins - components of the innate immune system in plants. Curr Protein Pept Sci. 2005;6:85–101. https://doi.org/10.2174/1389203053027575.
Article
CAS
PubMed
Google Scholar
van Loon LC, Rep M, Pieterse CMJ. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol. 2006;44:135–62. https://doi.org/10.1146/annurev.phyto.44.070505.143425.
Article
CAS
PubMed
Google Scholar
Krishnamurthy K, Balconi C, Sherwood JE, Giroux MJ. Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol Plant-Microbe Interact. 2001;14:1255–60.
Article
CAS
PubMed
Google Scholar
Roberti S, Janni M, Pontiggia D, Gerunzi M, Favaron F, Cervone F, et al. Gene characterization and chromosomal localization of polygalacturonase inhibiting proteins (PGIPs) in wheat. 10th international wheat genetics symposium, Paestum, Italy; 2003.
Google Scholar
Blein J-PP, Coutos-Thévenot P, Marion D, Ponchet M. From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci. 2002;7:293–6. https://doi.org/10.1016/S1360-1385(02)02284-7.
Article
CAS
PubMed
Google Scholar
Kang Z, Buchenauer H. Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum. Mycol Res. 2000;104:1083–93.
Article
Google Scholar
Mohammadi M, Kazemi H. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci. 2002;162:491–8.
Article
CAS
Google Scholar
Siranidou E, Kang Z, Buchenauer H. Studies on symptom development, phenolic compounds and morphological defence responses in wheat cultivars differing in resistance to Fusarium head blight. J Phytopathol. 2002;150:200–8.
Article
Google Scholar
Yoshida M, Kawada N, Tohnooka T. Effect of row type, flowering type and several other spike characters on resistance to Fusarium head blight in barley. Euphytica. 2005;141:217–27.
Article
Google Scholar
Lionetti V, Giancaspro A, Fabri E, Giove SL, Reem N, Zabotina OA, et al. Cell wall traits as potential resources to improve resistance of durum wheat against Fusarium graminearum. BMC Plant Biol. 2015;15:1–15.
Article
CAS
Google Scholar
Foroud N. Investigating the molecular mechanisms of Fusarium head blight resistance in wheat. Ph.D. thesis, University of British Columbia; 2011.
Google Scholar
Sung J-M, Cook RJ. Effect of water potential on reproduction and spore germination by Fusarium roseum ‘Graminearum,’ ‘Culmorum,’ and ‘Avenaceum. Phytopathology. 1981;71:499–504.
Article
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
PubMed
Google Scholar
Trimmomatic: A flexible read trimming tool for Illumina NGS data. http://www.usadellab.org/cms/index.php?page=trimmomatic.
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA- seq experiments with HISAT , StringTie and Ballgown. Nat Protoc. 2016;11:1650–67. https://doi.org/10.1038/nprot.2016-095.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
Article
PubMed
PubMed Central
CAS
Google Scholar
HTSeq: Analysing high-throughput sequencing data with Python. https://htseq.readthedocs.io/en/release_0.11.1/.
Analyzing RNA-seq data with DESeq2. http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html.
The R Project for Statistical Computing. https://www.r-project.org/.
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4:44. https://doi.org/10.1038/nprot.2008.211.
Article
CAS
Google Scholar
TrEMBL: Automatically annotated and not reviewed protein database. https://www.uniprot.org/.
Francis F, Dumas MD, Wisser RJ. ThermoAlign: a genome-aware primer design tool for tiled amplicon resequencing. Sci Rep. 2017;7:1–15. https://doi.org/10.1038/srep44437.
Article
CAS
Google Scholar
Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol. 2009;10:1–27.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Buerstmayr M, Buerstmayr H. Comparative mapping of quantitative trait loci for Fusarium head blight resistance and anther retention in the winter wheat population capo × Arina. Theor Appl Genet. 2015;128:1519–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calling variants with freebayes. http://clavius.bc.edu/~erik/CSHL-advanced-sequencing/freebayes-tutorial.html.
SnpEff: Genomic variant annotations and functional effect prediction toolbox. http://snpeff.sourceforge.net/
McHale L, Tan X, Koehl P, Michelmore RW. Plant NBS-LRR proteins: adaptable guards. Genome Biol. 2006;7:212. https://doi.org/10.1186/gb-2006-7-4-212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stefanowicz K, Lannoo N, Van Damme EJM. Plant F-box proteins – judges between life and death. Crit Rev Plant Sci. 2015;34:523–52. https://doi.org/10.1080/07352689.2015.1024566.
Article
CAS
Google Scholar
van den Burg HA, Tsitsigiannis DI, Rowland O, Lo J, Rallapalli G, MacLean D, et al. The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell. 2008;20:697–719. https://doi.org/10.1105/tpc.107.056978.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takatsuji H. Zinc-finger transcription factors in plants. Cell Mol Life Sci. 1998;54:582–96.
Article
CAS
PubMed
Google Scholar
Romeis T. Protein kinases in the plant defence response. Curr Opin Plant Biol. 2001;4:407–14. https://doi.org/10.1016/S1369-5266(00)00193-X.
Article
CAS
PubMed
Google Scholar
Goff KE, Ramonell KM. The role and regulation of receptor-like kinases in plant defense. Gene Regul Syst Bio. 2007;1:167–75.
PubMed
PubMed Central
Google Scholar
Žárský V. Clathrin in plant defense signaling and execution. Proc Natl Acad Sci U S A. 2016;113:10745–7. https://doi.org/10.1073/pnas.1612925113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walter S, Kahla A, Arunachalam C, Perochon A, Khan MR, Scofield SR, et al. A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance. J Exp Bot. 2015;66:2583–93. https://doi.org/10.1093/jxb/erv048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyakawa T, Hatano K, Miyauchi Y, Suwa Y, Sawano Y, Tanokura M. A secreted protein with plant-specific cysteine-rich motif functions as a mannose-binding lectin that exhibits antifungal activity. Plant Physiol. 2014;166:766–78. https://doi.org/10.1104/pp.114.242636.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergler J, Hoth S. Plant U-box armadillo repeat proteins AtPUB18 and AtPUB19 are involved in salt inhibition of germination in Arabidopsis. Plant Biol. 2011;13:725–30. https://doi.org/10.1111/j.1438-8677.2010.00431.x.
Article
CAS
PubMed
Google Scholar
Sreekanta S, Bethke G, Hatsugai N, Tsuda K, Thao A, Wang L, et al. The receptor-like cytoplasmic kinase PCRK1 contributes to pattern-triggered immunity against Pseudomonas syringae in Arabidopsis thaliana. New Phytol. 2015;207:78–90.
Article
CAS
PubMed
Google Scholar
Bittner-Eddy PD, Beynon JL. The Arabidopsis downy mildew resistance gene, RPP13-Nd, functions independently of NDR1 and EDS1 and does not require the accumulation of salicylic acid. Mol Plant-Microbe Interact. 2001;14:416–21. https://doi.org/10.1094/MPMI.2001.14.3.416.
Article
CAS
PubMed
Google Scholar
Hammond-kosack KE, Rudd JJ. Plant resistance signalling hijacked by a necrotrophic fungal pathogen. Plant Signal Behav. 2008;3:993–5.
Article
PubMed
PubMed Central
Google Scholar
Grant MR, Jones JDG. Hormone (dis)harmony moulds plant health and disease. Science. 2009;324:750–2. https://doi.org/10.1126/science.1173771.
Article
CAS
PubMed
Google Scholar
Mackey D, Holt BF, Wiig A, Dangl JL. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell. 2002;108:743–54. https://doi.org/10.1016/S0092-8674(02)00661-X.
Article
CAS
PubMed
Google Scholar
Eckert JH, Erdmann R. Peroxisome biogenesis. Rev Physiol Biochem Pharmacol. 2003;147:75–121. https://doi.org/10.1007/s10254-003-0007-z.
Article
CAS
PubMed
Google Scholar
Kao Y-T, Gonzalez KL, Bartel B. Peroxisome function, biogenesis, and dynamics in plants. Plant Physiol. 2018;176:162–77.
Article
CAS
PubMed
Google Scholar
Wang Z, Ji H, Yuan B, Wang S, Su C, Yao B, et al. ABA signalling is fine-tuned by antagonistic HAB1 variants. Nat Commun. 2015;6:8138. https://doi.org/10.1038/ncomms9138.
Article
PubMed
Google Scholar
Ton J, Flors V, Mauch-Mani B. The multifaceted role of ABA in disease resistance. Trends Plant Sci. 2009;14:310–7. https://doi.org/10.1016/j.tplants.2009.03.006.
Article
CAS
PubMed
Google Scholar
Wawrzynska A, Christiansen KM, Lan Y, Rodibaugh NL, Innes RW. Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling. Plant Physiol. 2008;148:1510–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frye CA, Tang D, Innes RW. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA. 2001;98:373–8. https://doi.org/10.1073/pnas.98.1.373.
Article
CAS
PubMed
Google Scholar
Tang D, Innes RW. Overexpression of kinase deficient form of the ECR1 gene enhances powdery mildew resistance and ethylene-induced senescene in Arabidopsis. Plant J. 2002;32:975–83.
Article
CAS
PubMed
Google Scholar
Hiruma K, Nishiuchi T, Kato T, Bednarek P, Okuno T, Schulze-Lefert P, et al. Arabidopsis ENHANCED DISEASE RESISTANCE 1 is required for pathogen-induced expression of plant defensins in nonhost resistance, and acts through interference of MYC2-mediated repressor function. Plant J. 2011;67:980–92.
Article
CAS
PubMed
Google Scholar
Warren RF, Henk A, Mowery P, Holub E, Innes RW. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell. 1998;10:1439–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi D, Dubiella U, Kim SH, Sloss DI, Dowen RH, Dixon JE, et al. Recognition of the protein kinase AVRPPHB SUSCEPTIBLE1 by the disease resistance protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 is dependent on s-acylation and an exposed loop in AVRPPHB SUSCEPTIBLE1. Plant Physiol. 2014;164:340–51.
Article
CAS
PubMed
Google Scholar
Du Y, Berg J, Govers F, Bouwmeester K. Immune activation mediated by the late blight resistance protein R1 requires nuclear localization of R1 and the effector AVR1. New Phytol. 2015;207:735–47.
Article
CAS
PubMed
Google Scholar
Qu L-J, Chen J, Liu M, Pan N, Okamoto H, Lin Z, et al. Molecular cloning and functional analysis of a novel type of bowman-birk inhibitor gene family in rice. Plant Physiol. 2003;133:560–70. https://doi.org/10.1104/pp.103.024810.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riera M, Redko Y, Leung J. Arabidopsis RNA-binding protein UBA2a relocalizes into nuclear speckles in response to abscisic acid. FEBS Lett. 2006;580:4160–5. https://doi.org/10.1016/j.febslet.2006.06.064.
Article
CAS
PubMed
Google Scholar
Khong GN, Pati PK, Richaud F, Parizot B, Bidzinski P, Mai CD, et al. OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice. Plant Physiol. 2015;169:2935–49. https://doi.org/10.1104/pp.15.01192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Tang W, Ma T, Niu D, Jin JB, Wang H, et al. A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis. J Integr Plant Biol. 2016;58:91–103.
Article
CAS
PubMed
Google Scholar
Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A. 2003;100:6263–8 http://www.pnas.org/content/100/10/6263.abstract.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiseleva AA, Shcherban AB, Leonova IN, Frenkel Z, Salina EA. Identification of new heading date determinants in wheat 5B chromosome. BMC Plant Biol. 2016;16 Suppl 1:8. https://doi.org/10.1186/s12870-015-0688-x.
Article
CAS
PubMed
Google Scholar
He X, Singh PK, Dreisigacker S, Singh S, Lillemo M, Duveiller E. Dwarfing genes Rht-B1b and Rht-D1b are associated with both type I FHB susceptibility and low anther extrusion in two bread wheat populations. PLoS One. 2016;11:e0162499. https://doi.org/10.1371/journal.pone.0162499.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Zhao-Hui C, Batoux M, Nekrasov V, Roux M, Chinchilla D, et al. Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc Natl Acad Sci U S A. 2009;106:15973–8. https://doi.org/10.1073/pnas.0905532106.
Article
PubMed
PubMed Central
Google Scholar
Xu G, Li S, Xie K, Zhang Q, Wang Y, Tang Y, et al. Plant ERD2-like proteins function as endoplasmic reticulum luminal protein receptors and participate in programmed cell death during innate immunity. Plant J. 2012;72:57–69. https://doi.org/10.1111/j.1365-313X.2012.05053.x.
Article
CAS
PubMed
Google Scholar
Ramírez V, García-Andrade J, Vera P. Enhanced disease resistance to Botrytis cinerea in myb46 Arabidopsis plants is associated to an early downregulation of CesA genes. Plant Signal Behav. 2011;6:911–3. https://doi.org/10.4161/psb.6.6.15354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noël LD, Cagna G, Stuttmann J, Wirthmüller L, Betsuyaku S, Witte C-P, et al. Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell. 2007;19:4061–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jardim-Messeder D, Caverzan A, Rauber R, de Souza FE, Margis-Pinheiro M, Galina A. Succinate dehydrogenase (mitochondrial complex II) is a source of reactive oxygen species in plants and regulates development and stress responses. New Phytol. 2015;208:776–89. https://doi.org/10.1111/nph.13515.
Article
CAS
PubMed
Google Scholar
Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, et al. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci U S A. 2003;100:9128–33. https://doi.org/10.1073/pnas.1533501100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitula F, Tajdel M, Cieśla A, Kasprowicz-Maluśki A, Kulik A, Babula-Skowrońska D, et al. Arabidopsis ABA-activated kinase MAPKKK18 is regulated by protein phosphatase 2C ABI1 and the ubiquitin–proteasome pathway. Plant Cell Physiol. 2015;56:2351–67. https://doi.org/10.1093/pcp/pcv146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Wu Q, Ren J, Qian W, He S, Huang K, et al. Two novel RING-type ubiquitin ligases, RGLG3 and RGLG4, are essential for jasmonate-mediated responses in Arabidopsis. Plant Physiol. 2012;160:808–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Wu Q, Cui S, Ren J, Qian W, Yang Y, et al. Hijacking of the jasmonate pathway by the mycotoxin fumonisin B1 (FB1) to initiate programmed cell death in Arabidopsis is modulated by RGLG3 and RGLG4. J Exp Bot. 2015;66:2709–21. https://doi.org/10.1093/jxb/erv068.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao F, Azhakanandam S, Franks RG. SEUSS and SEUSS-LIKE transcriptional adaptors regulate floral and embryonic development in Arabidopsis. Plant Physiol. 2010;152:821–36. https://doi.org/10.1104/pp.109.146183.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marzin S, Hanemann A, Sharma S, Hensel G, Kumlehn J, Schweizer G, et al. Are PECTIN ESTERASE INHIBITOR genes involved in mediating resistance to Rhynchosporium commune in barley? PLoS One. 2016;11:e0150485. https://doi.org/10.1371/journal.pone.0150485.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu N, Sun Y, Pei Y, Zhang X, Wang P, Li X, et al. A pectin methylesterase inhibitor enhances eesistance to verticillium wilt. Plant Physiol. 2018;176:2202 LP–220.
Article
CAS
Google Scholar
Davies J. Annexin-mediated calcium signalling in plants. Plants. 2014;3:128–40. https://doi.org/10.3390/plants3010128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV. Lipid transfer proteins as components of the plant innate immune system: structure, functions, and applications. Acta Nat. 2016;8:47–61.
Article
CAS
Google Scholar
Desaki Y, Kohari M, Shibuya N, Kaku H. MAMP-triggered plant immunity mediated by the LysM-receptor kinase CERK1. J Gen Plant Pathol JGPP. 2019;85:1.
Article
CAS
Google Scholar
Petutschnig EK, Stolze M, Lipka U, Kopischke M, Horlacher J, Valerius O, et al. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing. New Phytol. 2014;204:955–67. https://doi.org/10.1111/nph.12920.
Article
CAS
PubMed
Google Scholar
Humphrey TV, Haasen KE, Aldea-Brydges MG, Sun H, Zayed Y, Indriolo E, et al. PERK–KIPK–KCBP signalling negatively regulates root growth in Arabidopsis thaliana. J Exp Bot. 2015;66:71–83. https://doi.org/10.1093/jxb/eru390.
Article
CAS
PubMed
Google Scholar
Grant EH, Fujino T, Beers EP, Brunner AM. Characterization of NAC domain transcription factors implicated in control of vascular cell differentiation in Arabidopsis and Populus. Planta. 2010;232:337–52. https://doi.org/10.1007/s00425-010-1181-2.
Article
CAS
PubMed
Google Scholar
McLellan H, Boevink PC, Armstrong MR, Pritchard L, Gomez S, Morales J, et al. An RxLR effector from Phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLoS Pathog. 2013;9:e1003670.
Article
PubMed
PubMed Central
CAS
Google Scholar
De Cremer K, Mathys J, Vos C, Froenicke L, Michelmore RW, Cammue BP, et al. RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. Plant Cell Environ. 2013;36:1992–2007. https://doi.org/10.1111/pce.12106.
Article
CAS
PubMed
Google Scholar
Shiu SH, Bleecker AB. Plant receptor-like kinase gene family: diversity, function, and signaling. Sci Sig Trans Knowl Environ. 2001;RE22.2:1–14.
Google Scholar
Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, et al. The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell. 2009;21:2237 LP–2252.
Article
CAS
Google Scholar
van der Hoorn RAL, Kamoun S. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell. 2008;20:2009–17. https://doi.org/10.1105/tpc.108.060194.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nyathi Y, Baker A. Plant peroxisomes as a source of signalling molecules. Biochim Biophys Acta - Mol Cell Res. 1763;2006:1478–95. https://doi.org/10.1016/j.bbamcr.2006.08.031.
Article
CAS
Google Scholar