Watanabe S, Harada K, Abe J. Genetic and molecular bases of photoperiod responses of flowering in soybean. Breed Sci. 2011;61(5):531–43.
Article
CAS
Google Scholar
Cober ER, Morrison MJ. Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theor Appl Genet. 2010;120(5):1005–12.
Article
CAS
PubMed
Google Scholar
Zhang JP, Song QJ, Cregan PB, Nelson RL, Wang XZ, Wu JX, Jiang GL. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics. 2015;16(1):217. (https://link.springer.com/article/10.1186/s12864-015-1441-4).
Bernard RL. Two major genes for time of flowering and maturity in soybeans. Crop Sci. 1971;11(2):242–4.
Article
Google Scholar
Bonato ER, Vello NA. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol. 1999;22(2):229–32.
Article
Google Scholar
Valéria CP, De ALA, RAdS K. Inheritance of a long juvenile period under short-day conditions in soybean. Genet Mol Biol. 2002;25(4):463–9.
Article
Google Scholar
Watanabe S, Hideshima R, Xia ZJ, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, et al. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics. 2009;182(4):1251–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buzzell RI. Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Genet Cytol. 1971;13(4):703–7.
Article
Google Scholar
Samanfar B, Molnar SJ, Charette M, Schoenrock A, Dehne F, Golshani A, Belzile F, Cober ER. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor Appl Genet. 2017;130(2):377–90.
Article
CAS
PubMed
Google Scholar
Mcblain BA, Bernard RL. A new gene affecting the time of flowering and maturity in soybeans. J Hered. 1987;78(3):160–2.
Article
Google Scholar
Kong F, Nan H, Dong C, Ying L, Wu F, Wang J, Lu S, Yuan X, Abe J, Cober ER. A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci. 2014;54(6):2529–35.
Article
CAS
Google Scholar
Cober ER, Voldeng HD. A new soybean maturity and photoperiod-sensitivity locus linked to and. Crop Sci. 2001;41(3):698–701.
Article
Google Scholar
Cober ER, Molnar SJ, Charette M, Voldeng HD. A new locus for early maturity in soybean. Crop Sci. 2010;50(2):524–7.
Article
Google Scholar
Watanabe S, Harada K, Abe J. Genetic and molecular bases of photoperiod responses of flowering in soybean. Breed Sci. 2012;61(5):531–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu SJ, Zhao XH, Hu YL, Liu SL, Nan HY, Li XM, Fang C, Cao D, Shi XY, Kong LP, et al. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet. 2017;49(5):773–9.
Article
CAS
PubMed
Google Scholar
Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean Photoresponses associated with duplication of the Phytochrome a gene. Genetics. 2008;180(2):995–1007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yue YL, Liu NX, Jiang BJ, Li M, Wang HJ, Jiang Z, Pan HT, Xia QJ, Ma QB, Han TF, et al. A single nucleotide deletion in J encoding GmELF3 confers long juvenility and is associated with adaption of tropic soybean. Mol Plant. 2017;10(4):656–8.
Article
CAS
PubMed
Google Scholar
Wu F, Price BW, Haider W, Seufferheld G, Nelson R, Hanzawa Y. Functional and evolutionary characterization of the CONSTANS gene family in short-day photoperiodic flowering in soybean. PLoS One. 2014;9(1):e85754.
Article
PubMed
PubMed Central
CAS
Google Scholar
Na X, Jian B, Yao W, Wu C, Hou W, Jiang B, Bi Y, Han T. Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean. Plant Cell Rep. 2013;32(8):1219–29.
Article
CAS
PubMed
Google Scholar
Zhang Q, Li H, Li R, Hu R, Fan C, Chen F, Wang Z, Liu X, Fu Y, Lin C. Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci U S A. 2008;105(52):21028–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun. 2011;2:467. (https://www.nature.com/articles/ncomms1467?message-global=remove).
Nordborg M, Weigel D. Next-generation genetics in plants. Nature. 2008;456(7223):720–3.
Article
CAS
PubMed
Google Scholar
Weng J, Xie C, Hao Z, Wang J, Liu C, Li M, Zhang D, Bai L, Zhang S, Li X. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. Plos One. 2011;6(12):e29229.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su J, Fan S, Li L, Wei H, Wang C, Wang H, Song M, Zhang C, Gu L, Zhao S, et al. Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in Chinese upland cotton. Front Plant Sci. 2016;7:1576.
PubMed
PubMed Central
Google Scholar
Zhao X, Han YP, Li YH, Liu DY, Sun MM, Zhao Y, Lv CM, Li DM, Yang ZJ, Huang L, et al. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps. Plant J. 2015;82(2):245–55.
Article
CAS
PubMed
Google Scholar
Chen W, Yao J, Chu L, Yuan Z, Li Y, Zhang Y. Genetic mapping of the nulliplex-branch gene (gb_nb1) in cotton using next-generation sequencing. Theor Appl Genet. 2015;128(3):539–47.
Article
CAS
PubMed
Google Scholar
Mao T, Li J, Wen Z, Wu T, Wu C, Shi S, Jiang B, Hou W, Li W, Song Q. Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. BMC Genomics. 2017;18(1):415.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R, Hu G, Zhou Z, Yu H, Zhang M. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol. 2017;18(1):161.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou L, Wang SB, Jian J, Geng QC, Wen J, Song Q, Wu Z, Li GJ, Liu YQ, Dunwell JM. Identification of domestication-related loci associated with flowering time and seed size in soybean with the RAD-seq genotyping method. Sci Rep. 2015;5:9350.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Teng W, Li Y, Liu D, Cao G, Li D, Qiu L, Zheng H, Han Y, Li W. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7. Bmc Genomics. 2017;18(1):462.
Article
PubMed
PubMed Central
CAS
Google Scholar
Micheaux PLD, Drouilhet RM, Liquet BT. The R software : fundamentals of programming and statistical analysis. New York: Springer Publishing Company; 2013.
Book
Google Scholar
Song DWG. The study on the heritability and coefficient of hereditary variation of maize variety resources. J Hubei Agric Coll. 1999;19(3):212–4.
Google Scholar
Han YP, Zhao X, Liu DY, Li YH, Lightfoot DA, Yang ZJ, Zhao L, Zhou G, Wang ZK, Huang L, et al. Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol. 2016;209(2):871–84.
Article
CAS
PubMed
Google Scholar
Wen Z, Tan R, Yuan J, Bales C, Du W, Zhang S, Chilvers MI, Schmidt C, Song Q, Cregan PB. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics. 2014;15(1):809.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu J, Gael P, Briggs WH, Irie VB, Masanori Y, Doebley JF, Mcmullen MD, Gaut BS, Nielsen DM, Holland JB. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38(2):203–8.
Article
CAS
PubMed
Google Scholar
Qu MN, Jiang BJ, Liu W, Mao TT, Ma LM, Lin KX, Han TF, University NA. New approaches to molecular breeding of soybean. J Agric Sci Technol. 2014;16(3):8–13.
Google Scholar
Flint-Garcia SA, Thornsberry JM, Buckler ES. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol. 2003;54:357–74.
Article
CAS
PubMed
Google Scholar
Huang XH, Wei XH, Sang T, Zhao QA, Feng Q, Zhao Y, Li CY, Zhu CR, Lu TT, Zhang ZW, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet. 2010;42(11):961–967. (https://www.nature.com/articles/ng.695).
Article
CAS
PubMed
Google Scholar
Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A. 2013;110(2):453–8.
Article
CAS
PubMed
Google Scholar
Yan JB, Shah T, Warburton ML, Buckler ES, Mcmullen MD, Jonathan C. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One. 2009;4(12):e8451.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yong W, Kang C, Xu Z, Tan K, Zhu Z. Gene control of flowering time in higher plants. Chin Sci Bull. 2000;45(18):1633–42.
Article
CAS
Google Scholar
Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci. 2011;68(12):2013–37.
Article
CAS
PubMed
Google Scholar
Tiwari SB, Shen Y, Chang HC, Hou Y, Harris A, Ma SF, McPartland M, Hymus GJ, Adam L, Marion C. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol. 2010;187(1):57–66.
Article
CAS
PubMed
Google Scholar
Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science. 2012;336(6084):1045–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torti S, Fornara F, Vincent C, Andrés F, Nordström K, Göbel U, Knoll D, Schoof H, Coupland G. Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering. Plant Cell. 2012;24(2):444–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geraldo N, Baurle I, Kidou S, Hu X, Dean C. FRIGIDA delays flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-binding complex. Plant Physiol. 2009;150(3):1611–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei L, Il-Pyung A, Yuese N, Chan-Ho P, Lirong Z, Whitehill JGA, Haibin L, Qingzhen Z, Bo D, Qi X. The U-box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis. Plant Physiol. 2012;159(1):239–50.
Article
CAS
Google Scholar
Li J, Yang X, Wang Y, Li X, Gao Z, Pei M, Chen Z, Qu L-J, Gu H. Two groups of MYB transcription factors share a motif which enhances trans-activation activity. Biochem Biophys Res Commun. 2006;341(4):1155–63.
Article
CAS
PubMed
Google Scholar
Lai AG, Doherty CJ, Mueller-Roeber B, Kay SA, Schippers JH, Dijkwel PP. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc Natl Acad Sci. 2012;109(42):17129–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li G, Siddiqui H, Teng Y, Lin R, Wan X-Y, Li J, Lau O-S, Ouyang X, Dai M, Wan J. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol. 2011;13(5):616.
Article
CAS
PubMed
Google Scholar
Lu SX, Webb CJ, Knowles SM, Kim SH, Wang Z, Tobin EM. CCA1 and ELF3 interact in the control of hypocotyl length and flowering time in Arabidopsis. Plant Physiol. 2012;158(2):1079–88.
Article
CAS
PubMed
Google Scholar
Duong S, Vonapartis E, Li C-Y, Patel S, Gazzarrini S. The E3 ligase ABI3-INTERACTING PROTEIN2 negatively regulates FUSCA3 and plays a role in cotyledon development in Arabidopsis thaliana. J Exp Bot. 2017;68(7):1555–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han Y, Zhao X, Cao G, Wang Y, Li Y, Liu D, Teng W, Zhang Z, Li D, Qiu L, et al. Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping. BMC Genomics. 2015;16:598.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maag JLV. gganatogram: An R package for modular visualisation of anatograms and tissues based on ggplot2. F1000Res. 2018;7:1576.
Article
PubMed
PubMed Central
Google Scholar
Kahle D, Wickham H. ggmap: spatial visualization with ggplot2. R J. 2013;5(1):144–61.
Article
Google Scholar
Fehr WR, Caviness CE. Stages of soybean development. In: Special Report 80. vol. 80. Ames: Iowa State University of Science and Technology; 1977. p. 11.
Google Scholar
Field A. Discovering statistics using IBM SPSS statistics. 5th ed. Thousand Oaks: University of Sussex SAGE Publications Ltd; 2013.
Google Scholar
Tang QY, Zhang CX. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2013;20(2):254–60.
Article
PubMed
Google Scholar
Jamoza JE, Owuoche J, Kiplagat O, Opile W. Broad-sense heritability estimation and correlation among sugarcane (Saccharum spp. hybrids) yield and some agronomic traits in western Kenya. Int J Agric Policy Res. 2014;2(1):16–25.
Google Scholar
Frutos E, Galindo MP, Leiva V. An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch Env Res Risk A. 2014;28(7):1629–41.
Article
Google Scholar
Yan WK. Optimal use of biplots in analysis of multi-location variety test data. Acta Agron Sin. 2010;36(11):1805–19.
Google Scholar
Wu XL, Ren CW, Joshi T, Vuong T, Xu D, Nguyen HT. SNP discovery by high-throughput sequencing in soybean. BMC Genomics. 2010;11(1):469-0. (https://link.springer.com/article/10.1186/1471-2164-11-469).
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun XW, Liu DY, Zhang XF, Li WB, Liu H, Hong WG, Jiang CB, Guan N, Ma CX, Zeng HP, et al. SLAF-seq: An Efficient Method of Large-Scale De Novo SNP Discovery and Genotyping Using High-Throughput Sequencing. PLoS One. 2013;8(3):e58700. (https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0058700).
Article
CAS
PubMed
PubMed Central
Google Scholar
Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009;25(15):1966–7.
Article
CAS
PubMed
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.
Article
CAS
PubMed
Google Scholar
Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci U S A. 2001;98(20):11479–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Endelman JB, Jannink JL. Shrinkage estimation of the realized relationship matrix. G3 (Bethesda). 2012;2(11):1405–13.
Article
Google Scholar