Wilce MCJ, Parker MW. Structure and function of glutathione S-transferases. Biochim Biophys Acta. 1994;1205:1–18.
Article
CAS
PubMed
Google Scholar
Frear DS, Swanson HR. Biosynthesis of S-(4-ethylamino-6-isopropylamino-2-s-triazino) glutathione: partial purification and properties of a glutathione S-transferase from corn. Phytochemistry. 1970;9:2123–32.
Article
CAS
Google Scholar
Lamoureux GL, Shimabukuro RH, Swanson HR, Frear DS. Metabolism of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) in excised sorghum leaf sections. J Agric Food Chem. 1970;18:81–6.
Article
CAS
PubMed
Google Scholar
Mueller LA, Goodman CD, Silady RA, Walbot V. AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol. 2000;123:1561–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong H, Jiao Y, Hu W, Pua E. Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Mol Biol. 2005;57:53–66.
Article
CAS
PubMed
Google Scholar
Mauch F, Dudler R. Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol. 1993;102:1193–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bianchi MW, Roux C, Vartanian N. Drought regulation of GST8, encoding the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase. Physiol Plant. 2002;116:96–105.
Article
CAS
PubMed
Google Scholar
Droog F. Plant glutathione S-transferases, a tale of theta and tau. J Plant Growth Regul. 1997;16:95–107.
Article
CAS
Google Scholar
Lallement PA, Brouwer B, Keech O, Hecker A, Rouhier N. The still mysterious roles of cysteine-containing glutathione transferases in plants. Front Pharmacol. 2014;5:192.
Article
PubMed
PubMed Central
CAS
Google Scholar
Edwards R, Dixon DP. Plant glutathione transferases. Methods Enzymol. 2005;401:169–86.
Article
CAS
PubMed
Google Scholar
Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengt L, et al. Xenomic networks variability and adaptation traits in wood decaying fungi: fungal xenomic networks. Microb Biotechnol. 2013;6:248–63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Munyampundu JP, Xu YP, Cai XZ. Phi class of glutathione S-transferase gene superfamily widely exists in nonplant taxonomic groups. Evol Bioinforma. 2016;12:59–71.
Article
CAS
Google Scholar
Marrs KA. The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol. 1996;47:127–58.
Article
CAS
PubMed
Google Scholar
Jones AM. Auxin-binding proteins. Annu. Rev. plant Physiol. Plant Mol. Biol. 1994;45:393–420.
CAS
Google Scholar
Thom R, Dixon DP, Edwards R, Cole DJ, Lapthorn AJ. The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism. J Mol Biol. 2001;308:949–62.
Article
CAS
PubMed
Google Scholar
Dixon DP, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biol. 2002;3(3): reviews):3004.1–3004.10.
Article
Google Scholar
Dixon DP, Davis BG, Edwards R. Functional divergence in the glutathione transferase superfamily in plants. J Biol Chem. 2002;277(34):30859–69.
Article
CAS
PubMed
Google Scholar
Elodie SG, Simon RL, Mathieu S, Kevin R, Olivier K, Didierjean C, et al. Functional, structural and biochemical features of plant serinyl-glutathione transferases. Front Plant Sci. 2019;10:608.
Article
Google Scholar
Wagner U, Edwards R, Dixon DP, Mauch F. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol. 2002;49:515–32.
Article
CAS
PubMed
Google Scholar
Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Harvey MA, et al. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J. 2009;58(1):53–68.
Article
CAS
PubMed
Google Scholar
Soranzo N, Gorla MS, Mizzi L, Toma GD, Frova C. Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol Gen Genomics. 2004;271(5):511–21.
Article
CAS
Google Scholar
Jain M, Ghanashyam C, Bhattacharjee A. Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genomics. 2010;11:73.
Article
PubMed
PubMed Central
CAS
Google Scholar
He G, Guan CN, Chen QX, Gou XJ, Liu W, Zeng QY, Lan T. Genome-wide analysis of the glutathione S-transferase gene family in Capsella rubella: identification, expression, and biochemical functions. Front Plant Sci. 2016;7:1325.
PubMed
PubMed Central
Google Scholar
Rezaei MK, Shobbar ZS, Shahbazi M, Abedini R, Zare S. Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern. J Plant Physiol. 2013;170(14):1277–84.
Article
CAS
PubMed
Google Scholar
Dong YT, Li C, Zhang Y, He QL, Daud MK, Chen JH, et al. Glutathione S-transferase gene family in Gossypium raimondii and G. arboreum: Comparative genomic study and their expression under salt stress. Front Plant Sci. 2016;7:139.
PubMed
PubMed Central
Google Scholar
Lan T, Wang XR, Zeng QY. Structural and functional evolution of positively selected sites in pine glutathione S-transferase enzyme family. J Biol Chem. 2013;288(34):24441–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Q, Liu YJ, Zeng QY. Biochemical functions of the glutathione transferase supergene family of Larix kaempferi. Plant Physiol Biochem. 2014;77:99–107.
Article
CAS
PubMed
Google Scholar
Wang LB, Qian M, Wang RZ, Wang L, Zhang SL. Characterization of the glutathione S-transferase (GST) gene family in Pyrus bretschneideri and their expression pattern upon superficial scald development. Plant Growth Regul. 2018;86(2):211–22.
Article
CAS
Google Scholar
Khan N, Hu CM, Khan WA, Hou XL. Genome-wide identification, classification, and expression divergence of glutathione-transferase family in Brassica rapa under multiple hormone treatments. Biomed Res Int. 2018;2018:6023457.
PubMed
PubMed Central
Google Scholar
Islam MS, Choudhury M, Majlish AK, Islam T, Ghosh A. Comprehensive genome-wide analysis of glutathione S-transferase gene family in potato (Solanum tuberosum L.) and their expression profiling in various anatomical tissues and perturbation conditions. Gene. 2018;639:149–62.
Article
CAS
PubMed
Google Scholar
Kayum MA, Nath UK, Park JI, Biswas MK, Choi EK, Song JY, Kim HT, Nou IS. Genome-wide identification, characterization, and expression profiling of glutathione S-transferase (GST) family in pumpkin reveals likely role in cold-stress tolerance. Genes. 2018;9(2):84.
Article
PubMed Central
CAS
Google Scholar
Licciardello C, D’Agostino N, Traini A, Recupero GR, Frusciante L, Chiusano ML. Characterization of the glutathione S-transferase gene family through ESTs and expression analyses within common and pigmented cultivars of Citrus sinensis(L.) Osbeck. BMC Plant Biol. 2014;14:39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Islam S, Rahman IA, Islam T, Ghosh A. Genome-wide identification and expression analysis of glutathione S-transferase gene family in tomato: gaining an insight to their physiological and stress-specific roles. PLoS One. 2017;12(11):e0187504.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu YJ, Han XM, Ren LL, Yang HL, Zeng QY. Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. Plant Physiol. 2013;161(2):773.
Article
CAS
PubMed
Google Scholar
Skopelitou K, Muleta AW, Papageorgiou AC, Chronopoulou E, Labrou NE. Catalytic features and crystal structure of a tau class glutathione transferase from Glycine max specifically upregulated in response to soybean mosaic virus infections. BBA-Proteins Proteom. 2015;1854:166–77.
Article
CAS
Google Scholar
Jiang HW, Liu MJ, Chen IC, Huang CH, Chao LY, Hsieh HL. A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol. 2010;154:1646–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu J, Zheng AQ, Xing XJ, Chen L, Fu XY, Peng RH. Transgenic Arabidopsis plants expressing grape glutathione S-transferase gene (VvGSF13) show enhanced tolerance to abiotic stress. Biochem Mosc. 2018;83(6):755–65.
Article
CAS
Google Scholar
Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK. Differential expression of rice lambda class GST gene family members during plant growth, development and in response to stress conditions. Plant Mol Biol Report. 2013;31(3):569–80.
Article
CAS
Google Scholar
Chen Z, Gallie DR. Dehydroascorbate Reductase affects leaf growth, development, and function. Plant Physiol. 2006;142(2):775–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao CQ, Yang GY, Guo YC, Zhao YL, Yang CP. Overexpression of ThGSTZ1 from Tamarix hispida improves tolerance to exogenous ABA and methyl viologen. Trees Struct Funct. 2016;30(6):1935–44.
Article
CAS
Google Scholar
Thom R, Dixon DP, Edwards R, Cole DJ, Lapthorn AJ. The stucture of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism. J Mol Biol. 2001;308(5):949–62.
Article
CAS
PubMed
Google Scholar
Banday ZZ, Nandi AK. Arabidopsis thaliana glutathione-S-transferase theat 2 interacts with RSI1/FLD to activate systemic acquired resistance. Mol Plant Pathol. 2018;19(2):464–75.
Article
CAS
PubMed
Google Scholar
Martinez-Perez E, Shaw P, Moore G. The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature. 2001;411(6834):204–7.
Article
CAS
PubMed
Google Scholar
International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403):eaar7191.
Article
CAS
Google Scholar
Dudler R, Hertig C, Rebmann G, Bull J, Mauch F. A pathogen-induced wheat gene encodes a protein homologous to glutathione-S-transferases. Mol Plant Microbe In. 1991;4(1):14–8.
Article
CAS
Google Scholar
Gallé Á, Csiszár J, Secenji M, Guóth A, Cseuz L, Tari I, et al. Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: response to water deficit. J Plant Physiol. 2009;166(17):1878–91.
Article
PubMed
CAS
Google Scholar
Dixon DP, Edwards R. Roles for stress-inducible lambda glutathione transferases in flavonoid metabolism in plants as identified by ligand fishing. J Biol Chem. 2010;285(47):36322–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wani SH, Kumar V, Shriram V, Sah SK. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016;4(3):162–76.
Article
Google Scholar
Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018;46(D1):D493–6.
Article
CAS
PubMed
Google Scholar
Hao ZY, Wang X, Zong YX, Wen SY, Cheng YL, Li HG. Enzymatic activity and functional analysis under multiple abiotic stress conditions of a dehydroascorbate reducrase gene derived from Liriodendron Chinense. Environ Exp Bot. 2019;167:103850.
Article
CAS
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer YVD, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CJ, Chen H, He YH, Xia R. TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv. 2018. https://doi.org/10.1101/289660.
Kurata N, Moore G, Nagamura Y, Foote T, Yano M, Minobe Y. Conservation of genome structure between rice and wheat. Nat Biotechnol. 1994;12:276–8.
Article
CAS
Google Scholar
Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell. 2008;20:11–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramirez-Gonzalez RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, et al. The transcriptional landscape of polyploid wheat. Science. 2018;361(6403):662–76.
Article
CAS
Google Scholar
Borrill P, Ramirez-Gonzalez R, Uauy C. expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol. 2016;170(4):2172–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hurles M. Gene duplication: the genomic trade in spare parts. PLoS Biol. 2004;2(7):E206.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu J, Wang J, Lin W, Li S, Li H, Zhou J. The genomes of Oryza sativa: a history of duplications. PLoS Biol. 2005;3(2):e38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol. 2014;14:93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adams KL, Wendel JF. Polyploidy and genome evolution in plants. Curr Opin Plant Biol. 2005;8:135–41.
Article
CAS
PubMed
Google Scholar
Ganko EW, Meyers BC, Vision TJ. Divergence in expression between duplicated genes in Arabidopsis. Mol Biol Evol. 2007;24(10):2298–309.
Article
CAS
PubMed
Google Scholar
Huerta-Cepas J, Dopazo J, Huynen MA, Gabaldon T. Evidence for short-time divergence and long-time conservation of tissue-specific expression after gene duplication. Brief Bioinform. 2011;12(5):442–8.
Article
CAS
PubMed
Google Scholar
Moons A. OsGSTU3 and OSGSTU4, encoding tau class glutathione S-transferases, are heavy metal-and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett. 2003;553:427–32.
Article
CAS
PubMed
Google Scholar
Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, et al. Drought and salt stress tolerance of an arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol. 2012;158:340–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang CW, Wang Y, Pan Q, Chen SK, Feng CZ, Hai JB, et al. Comparison of Trihelix transcription factors between wheat and Brachypodium distachyon at genome-wide. BMC Genomics. 2019;20:142.
Article
PubMed
PubMed Central
Google Scholar
Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, et al. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis. 1993;14(10):1023–31.
Article
CAS
PubMed
Google Scholar
Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol. 1999;112:531–52.
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu B, Jin J, Guo AY, Zhang H, Luo JC, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7.
Article
PubMed
Google Scholar
Wang YP, Tang HB, DeBarry JD, Tan X, Li JP, Wang XY, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.
Article
CAS
PubMed
PubMed Central
Google Scholar