Christensen K, Thinggaard M, McGue M, Rexbye H, Hjelmborg JV, Aviv A, et al. Perceived age as clinically useful biomarker of ageing: cohort study. BMJ. 2009;339:b5262.
PubMed
PubMed Central
Google Scholar
Gunn DA, Rexbye H, Griffiths CE, Murray PG, Fereday A, Catt SD, et al. Why some women look young for their age. PLoS One. 2009;4:e8021.
PubMed
PubMed Central
Google Scholar
Gunn DA, Larsen LA, Lall JS, Rexbye H, Christensen K. Mortality is written on the face. J Gerontol A Biol Sci Med Sci. 2016;71:72–7.
PubMed
Google Scholar
Vierkötter A, Ranft U, Krämer U, Sugiri D, Reimann V, Krutmann J. The SCINEXA: a novel, validated score to simultaneously assess and differentiate between intrinsic and extrinsic skin ageing. J Dermatol Sci. 2009;53:207–11.
PubMed
Google Scholar
Seiberg M. Age-induced hair greying - the multiple effects of oxidative stress. Int J Cosmet Sci. 2013;35:32–8.
Google Scholar
Kayser M. Forensic DNA phenotyping: predicting human appearance from crime scene material for investigative purposes. Forensic Sci Int Genet. 2015;18:33–48.
Keogh EV, Walsh RJ. Rate of greying of human hair. Nature. 1965;207:877–8.
CAS
PubMed
Google Scholar
Tobin DJ, Paus R. Graying: gerontobiology of the hair follicle pigmentary unit. Exp Gerontol. 2001;36:29–54.
CAS
PubMed
Google Scholar
Jo SK, Lee JY, Lee Y, Kim CD, Lee JH, Lee YH. Three streams for the mechanism of hair graying. Ann Dermatol. 2018;30:397–401.
CAS
PubMed
PubMed Central
Google Scholar
Neste DV, Tobin DJ. Hair cycle and hair pigmentation: dynamic interactions and changes associated with aging. Micron. 2004;35:193–200.
PubMed
Google Scholar
Panhard S, Lozano I, Loussouarn G. Greying of the human hair: a worldwide survey, revisiting the '50′ rule of thumb. Br J Dermatol. 2012;167:865–73.
CAS
PubMed
Google Scholar
Nishimura EK, Granter SR, Fisher DE. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science. 2005;307:720–4.
CAS
PubMed
Google Scholar
Jadkauskaite L, Coulombe PA, Schäfer M, Dinkova-Kostova AT, Paus R, Haslam IS. Oxidative stress management in the hair follicle: could targeting NRF2 counter age-related hair disorders and beyond? Bioessays. 2017;39.
Arck PC, Overall R, Spatz K, Liezman C, Handjiski B, Klapp BF, et al. Towards a "free radical theory of graying": melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage. FASEB J. 2006;20:1567–9.
CAS
PubMed
Google Scholar
Choi HI, Choi GI, Kim EK, Choi YJ, Sohn KC, Lee Y, et al. Hair greying is associated with active hair growth. Br J Dermatol. 2011;165:1183–9.
CAS
PubMed
Google Scholar
Shin H, Ryu HH, Yoon J, Jo S, Jang S, Choi M, et al. Association of premature hair graying with family history, smoking, and obesity: a cross-sectional study. J Am Acad Dermatol. 2015;72:321–7.
PubMed
Google Scholar
Adhikari K, Fontanil T, Cal S, Mendoza-Revilla J, Fuentes-Guajardo M, Chacón-Duque JC, et al. A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features. Nat Commun. 2016;7:10815.
CAS
PubMed
PubMed Central
Google Scholar
Weissbrod O, Flint J, Rosset S. Estimating SNP-based heritability and genetic correlation in case-control studies directly and with summary statistics. Am J Hum Genet. 2018;103:89–99.
CAS
PubMed
PubMed Central
Google Scholar
Han J, Kraft P, Nan H, Guo Q, Chen C, Qureshi A, et al. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet. 2008;4:e1000074.
PubMed
PubMed Central
Google Scholar
Jacobs LC, Hamer MA, Gunn DA, Deelen J, Lall JS, van Heemst D, et al. A genome-wide association study identifies the skin color genes IRF4, MC1R, ASIP, and BNC2 influencing facial pigmented spots. J Invest Dermatol. 2015;135:1735–42.
CAS
PubMed
Google Scholar
Hagenaars SP, Hill WD, Harris SE, Ritchie SJ, Davies G, Liewald DC, et al. Genetic prediction of male pattern baldness. PLoS Genet. 2017;13:e1006594.
PubMed
PubMed Central
Google Scholar
Kukla-Bartoszek M, Pośpiech E, Woźniak A, Boroń M, Karłowska-Pik J, Teisseyre P, et al. DNA-based predictive models for the presence of freckles. Forensic Sci Int Genet. 2019;42:252–9.
CAS
PubMed
Google Scholar
Praetorius C, Grill C, Stacey SN, Metcalf AM, Gorkin DU, Robinson KC, et al. A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway. Cell. 2013;155:1022–33.
CAS
PubMed
Google Scholar
McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, et al. Bcl2 regulation by the melanocyte master regulator mitf modulates lineage survival and melanoma cell viability. Cell. 2002;109:707–18.
CAS
PubMed
Google Scholar
Dawber RP. Integumentary associations of pernicious anaemia. Br J Dermatol. 1970;82:221–3.
CAS
PubMed
Google Scholar
Blumen SC, Bevan S, Abu-Mouch S, Negus D, Kahana M, Inzelberg R, et al. A locus for complicated hereditary spastic paraplegia maps to chromosome 1q24-q32. Ann Neurol. 2003;54:796–803.
PubMed
Google Scholar
Domínguez-Gerpe L, Araújo-Vilar D. Prematurely aged children: molecular alterations leading to Hutchinson-Gilford progeria and Werner syndromes. Curr Aging Sci. 2008;1:202–12.
PubMed
Google Scholar
Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat. 2010;31:1–16.
Google Scholar
Ritchie MD. Finding the epistasis needles in the genome-wide haystack. Methods Mol Biol. 2015;1253:19–33.
CAS
PubMed
Google Scholar
Kim H, Grueneberg A, Vazquez AI, Hsu S, de Los Campos G. Will big data close the missing heritability gap? Genetics. 2017;207:1135–45.
CAS
PubMed
PubMed Central
Google Scholar
de Los CG, Vazquez AI, Hsu S, Lello L. Complex-trait prediction in the era of big data. Trends Genet. 2018;34:746–54.
Google Scholar
Hoggart CJ, Whittaker JC, De Iorio M, Balding DJ. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLoS Genet. 2008;4:e1000130.
PubMed
PubMed Central
Google Scholar
Schnohr P, Lange P, Nyboe J, Appleyard M, Jensen G. Gray hair, baldness, and wrinkles in relation to myocardial infarction: the Copenhagen city heart study. Am Heart J. 1995;130:1003–10.
CAS
PubMed
Google Scholar
Orr-Walker BJ, Evans MC, Ames RW, Clearwater JM, Reid IR. Premature hair graying and bone mineral density. J Clin Endocrinol Metab. 1997;82:3580–3.
CAS
PubMed
Google Scholar
Kocaman SA, Cetin M, Durakoglugil ME, Erdoğan T, Çanga A, Çiçek Y, et al. The degree of premature hair graying as an independent risk marker for coronary artery disease: a predictor of biological age rather than chronological age. Anadolu Kardiyol Derg. 2012;12:457–63.
PubMed
Google Scholar
Harris ML, Fufa TD, Palmer JW, Joshi SS, Larson DM, Incao A, et al. A direct link between MITF, innate immunity, and hair graying. PLoS Biol. 2018;16:e2003648.
PubMed
PubMed Central
Google Scholar
Yashin AI, Wu D, Arbeev KG, Ukraintseva SV. Joint influence of small-effect genetic variants on human longevity. Aging (Albany NY). 2010;2:612–20.
CAS
Google Scholar
Law MH, Medland SE, Zhu G, Yazar S, Viñuela A, Wallace L, et al. Genome-wide association shows that pigmentation genes play a role in skin aging. J Invest Dermatol. 2017;137:1887–94.
CAS
PubMed
Google Scholar
Zhang Q, Marioni RE, Robinson MR, Higham J, Sproul D, Wray NR. Genotype effects contribute to variation in longitudinal methylome patterns in older people. Genome Med. 2018;10:75.
CAS
PubMed
PubMed Central
Google Scholar
Bandyopadhyay D, Medrano EE. The emerging role of epigenetics in cellular and organismal aging. Exp Gerontol. 2003;38:1299–307.
CAS
PubMed
Google Scholar
Hunt SE, McLaren W, Gil L, Thormann A, Schuilenburg H, Sheppard D, et al. Ensembl variation resources. Database. 2018. https://doi.org/10.1093/database/bay119.
Riviere JB, Ramalingam S, Lavastre V, Shekarabi M, Holbert MS, Lafontaine J, et al. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am J Hum Genet. 2011;89:219–30.
CAS
PubMed
PubMed Central
Google Scholar
Erlich Y, Edvardson S, Hodges E, Zenvirt S, Thekkat P, Shaag A, et al. Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res. 2011;21:658–64.
CAS
PubMed
PubMed Central
Google Scholar
Lee JYW, Hsu CK, Michael M, Nanda A, Liu L, McMillan J, et al. Large intragenic deletion in DSTYK underlies autosomal-recessive complicated spastic paraparesis, SPG23. Am J Hum Genet. 2017;100:364–70.
CAS
PubMed
PubMed Central
Google Scholar
Baptista FI, Pinto MJ, Elvas F, Almeida RD, Ambrósio AF. Diabetes alters KIF1A and KIF5B motor proteins in the hippocampus. PLoS One. 2013;8:e65515.
CAS
PubMed
PubMed Central
Google Scholar
Miranda JJ, Taype-Rondan A, Tapia JC, Gastanadui-Gonzalez MG, Roman-Carpio R. Hair follicle characteristics as early marker of type 2 diabetes. Med Hypotheses. 2016;95:39–44.
CAS
PubMed
PubMed Central
Google Scholar
Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5:41.
PubMed
Google Scholar
Fang S, Han J, Zhang M, Wang L, Wei Q, Amos CI, et al. Joint effect of multiple common SNPs predicts melanoma susceptibility. PLoS One. 2013;8:e85642.
PubMed
PubMed Central
Google Scholar
Fujioka Y, Kimata Y, Nomaguchi K, Watanabe K, Kohno K. Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5-SMC6 complex involved in DNA repair. J Biol Chem. 2002;277:21585–91.
CAS
PubMed
Google Scholar
Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel R, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nature Med. 2011;17:1473–80.
CAS
PubMed
Google Scholar
Schmit K, Michiels C. TMEM proteins in Cancer: a review. Front Pharmacol. 2018;9:1345.
CAS
PubMed
PubMed Central
Google Scholar
Medland SE, Nyholt DR, Painter JN, McEvoy BP, McRae AF, Zhu G, et al. Common variants in the trichohyalin gene are associated with straight hair in Europeans. Am J Hum Genet. 2009;85:750–5.
CAS
PubMed
PubMed Central
Google Scholar
Heilmann-Heimbach S, Herold C, Hochfeld LM, Hillmer AM, Nyholt DR, Hecker J, et al. Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern baldness. Nat Commun. 2017;8:14694.
PubMed
PubMed Central
Google Scholar
Pirastu N, Joshi PK, de Vries PS, Cornelis MC, McKeigue PM, Keum N, et al. GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk. Nat Commun. 2017;8:1584.
PubMed
PubMed Central
Google Scholar
Higgins CA, Petukhova L, Harel S, Ho YY, Drill E, Shapiro L, et al. FGF5 is a crucial regulator of hair length in humans. Proc Nat Acad Sci. 2014;111:10648–53.
CAS
PubMed
PubMed Central
Google Scholar
Branicki W, Liu F, van Duijn K, Draus-Barini J, Pośpiech E, Walsh S, et al. Model-based prediction of human hair color using DNA variants. Hum Genet. 2011;129:443–54.
PubMed
PubMed Central
Google Scholar
Marcińska M, Pośpiech E, Abidi S, Dyrberg JA, van den Berge M, Carracedo Á, et al. Evaluation of DNA variants associated with androgenetic alopecia and their potential to predict male pattern baldness. PLoS One. 2015;10:e0127852.
PubMed
PubMed Central
Google Scholar
Pośpiech E, Karłowska-Pik J, Marcińska M, Abidi S, Andersen JD, Berge MVD, et al. Evaluation of the predictive capacity of DNA variants associated with straight hair in Europeans. Forensic Sci Int Genet. 2015;19:280–8.
PubMed
Google Scholar
Liu F, Hamer MA, Heilmann S, Herold C, Moebus S, Hofman A, et al. Prediction of male pattern baldness from genotypes. Eur J Hum Genet. 2016;24:895–902.
PubMed
Google Scholar
Pośpiech E, Chen Y, Kukla-Bartoszek M, Breslin K, Aliferi A, Andersen JD, et al. Towards broadening forensic DNA Phenotyping beyond pigmentation: improving the prediction of head hair shape from DNA. Forensic Sci Int Genet. 2018;37:241–51.
PubMed
Google Scholar
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.
PubMed
PubMed Central
Google Scholar
Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–67.
CAS
PubMed
Google Scholar
Lu AT. Xue L, Salfati EL, Chen BH, Ferrucci L, Levy D, et al. GWAS of epigenetic aging rates in blood reveals a critical role for TERT Nat Commun. 2018;9:387.
PubMed
Google Scholar
Hillmer A, Freudenberg J, Myles S, Herms S, Tang K, Hughes DA, et al. Recent positive selection of a human androgen receptor/ectodysplasin A2 receptor haplotype and its relationship to male pattern baldness. Hum Genet. 2009;126:255–64.
CAS
PubMed
PubMed Central
Google Scholar
Claes P, Hill H, Shriver MD. Toward DNA-based facial composites: preliminary results and validation. Forensic Sci Int Genet. 2014;13:208–16.
CAS
PubMed
Google Scholar
Schneider P, Prainsack B, Kayser M. The Use of Forensic DNA Phenotyping in Predicting Appearance and Biogeographic Ancestry. Dtsch Arztebl Int. 2019;51–52:873–880.
Krystkowiak I, Lenart J, Debski K, Kuterba P, Petas M, Kaminska B, et al. Nencki Genomics Database--Ensembl Funcgen Enhanced with Intersections, User Data and Genome-Wide TFBS Motifs. Database. 2013;bat069 https://doi.org/10.1093/database/bat069.
Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507:455–61.
CAS
PubMed
PubMed Central
Google Scholar
FANTOM. Consortium and the RIKEN PMI and CLST (DGT), Forrest AR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ, et al. A Promoter-Level Mammalian Expression Atlas Nature. 2014;507:462–70.
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
PubMed
PubMed Central
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
CAS
PubMed
PubMed Central
Google Scholar
Depristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–501.
CAS
PubMed
PubMed Central
Google Scholar
Frommlet F, Bigdan M, Ramsey D. Phenotypes and genotypes. Springer-Verlag, London: The Search for Influential Genes; 2016.
Google Scholar
Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. J Bioinforma Comput Biol. 2005;3:185–205.
CAS
Google Scholar
De Jay N, Papillon-Cavanagh S, Olsen C, El-Hachem N, Bontempi G, Haibe-Kains B. mRMRe: an R package for parallelized mRMR ensemble feature selection. Bioinformatics. 2013;29:2365–8.
PubMed
Google Scholar
Pośpiech E, Karłowska-Pik J, Ziemkiewicz B, Kukla M, Skowron M, Wojas-Pelc A, et al. Further evidence for population specific differences in the effect of DNA markers and gender on eye colour prediction in forensics. Int J Legal Med. 2016;130:923–34.
PubMed
PubMed Central
Google Scholar
Pośpiech E, Draus-Barini J, Kupiec T, Wojas-Pelc A, Branicki W. Prediction of eye color from genetic data using Bayesian approach. J Forensic Sci. 2012;57:880–6.
PubMed
Google Scholar
Parker BJ, Günter S, Bedo J. Stratification bias in low signal microarray studies. BMC Bioinformatics. 2007;8:326.
PubMed
PubMed Central
Google Scholar